题目内容
【题目】已知过点A(0,1)且斜率为k的直线l与圆C:x2+y2﹣4x﹣6y+12=0相交于M、N两点
(1)求实数k的取值范围;
(2)求证:为定值;
(3)若O为坐标原点,问是否存在直线l,使得,若存在,求直线l的方程,若不存在,说明理由.
【答案】(1); (2)见解析; (3)不存在,见解析.
【解析】
(1)设直线的方程为,再联立圆的方程,令二次方程的判别式大于0即可求解.
(2)设M(x1,y1),N(x2,y2),联立直线与圆的方程,再表达出,代入韦达定理化简消去即可.
(3)联立直线与圆的方程,再利用求得,判断是否满足的取值范围即可.
(1)直线l的方程为y=kx+1,
代入圆的方程可得:x2+(kx+1)2﹣4x﹣6(kx+1)+12=0,
化简得:(1+k2)x2﹣4(k+1)x+7=0,
∵直线l与圆有两个交点,∴△=16(k+1)2﹣28(1+k2)>0,即3k2﹣8k+3<0,
解得:.
(2)设M(x1,y1),N(x2,y2),则(x1,y1﹣1),(x2,y2﹣1),
∴x1x2+y1y2﹣(y1+y2)+1,
由(1)可知x1x2,x1+x2,
∴y1y2=(kx1+1)(kx2+1)=k2x1x2+k(x1+x2)+1,
y1+y2=kx1+1+kx2+1=k(x1+x2)+2,
∴x1x2+y1y2﹣(y1+y2)+17,即为定值.
(3)若8,则x1x2+y1y2=8,即1=8,
∴0,即k=0或k=﹣1.
由(1)可知k>0,故不存在直线l,使得8.
【题目】如图,已知点为抛物线,点为焦点,过点的直线交抛物线于两点,点在抛物线上,使得的重心在轴上,直线交轴于点,且在点右侧.记的面积为.
(1)求的值及抛物线的标准方程;
(2)求的最小值及此时点的坐标.
【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
支付金额 支付方式 | 不大于2000元 | 大于2000元 |
仅使用A | 27人 | 3人 |
仅使用B | 24人 | 1人 |
(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;
(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.