题目内容
(本小题满分
12分)
已知定义域为
的函数
具有以下性质
:①
,
;②
;③当
时,总有
,
(1)求
;
(2)求不等式
的解集
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082315150335272.gif)
已知定义域为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151503368221.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151503383265.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082315150341465.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151503430307.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151503446343.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151503461615.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151503477230.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151503508328.gif)
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151503524519.gif)
(2)求不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151503633568.gif)
(1)
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151503664719.gif)
(2)解集为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151503695442.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151503648314.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151503664719.gif)
(2)解集为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151503695442.gif)
解:(1)取
,由条件式②得:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151503726528.gif)
因为
,
则
,从而![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151503664719.gif)
(2)结合(1)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082315150385171.gif)
得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151503898980.gif)
设
,则存在
,使得
,
则
,
所以
为单调递减函数,所以
,
解集为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151503695442.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151503711283.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151503726528.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082315150374285.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151503430307.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151503446343.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151503648314.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151503664719.gif)
(2)结合(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082315150385171.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151503867411.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151503898980.gif)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151503992327.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151504038368.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151504085407.gif)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231515041011663.gif)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151504116275.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231515041481032.gif)
解集为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151503695442.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
题目内容