题目内容

已知函数f(x)=lnx+tanα(α∈(0,
π
2
))的导函数为f′(x),若使得f′(x0)=f(x0)立的x0<1,则实数α的取值范围为(  )
A.(
π
4
π
2
B.(0,
π
3
C.(
π
6
π
4
D.(0,
π
4
∵f′(x)=
1
x
,f′(x0)=
1
x0
,f′(x0)=f(x0),
1
x0
=lnx0+tanα,
∴tanα=
1
x0
-lnx0
又∵0<x0<1,
∴可得
1
x0
-lnx0>1,即tanα>1,
∴α∈(
π
4
π
2
).
故选:A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网