题目内容
【题目】集合P={x|a+1≤x≤2a+1},Q={x|﹣2≤x≤5}
(1)若a=3,求集合(RP)∩Q;
(2)若PQ,求实数a的取值范围.
【答案】
(1)解:将a=3代入得:P={x|4≤x≤7},可得RP={x|x<4或x>7},
∵Q={x|﹣2≤x≤5},∴(RP)∩Q={x|﹣2≤x<4}
(2)解:由PQ,分两种情况考虑:
(ⅰ)当P≠时,根据题意得: ,解得:0≤a≤2;
(ⅱ)当P=时,可得2a+1<a+1,解得:a<0,
综上:实数a的取值范围为(﹣∞,2]
【解析】(1)将a的值代入集合P中的不等式,确定出P,找出P的补集,求出P补集与Q的交集即可;(2)根据P为Q的子集列出关于a的不等式组,求出不等式组的解集即可得到a的范围.
练习册系列答案
相关题目
【题目】一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,具有线性相关关系,下表为抽样试验的结果:
转速x(转/秒) | 8 | 10 | 12 | 14 | 16 |
每小时生产有缺点的零件数y(件) | 5 | 7 | 8 | 9 | 11 |
(1)如果y对x有线性相关关系,求回归方程;
(2)若实际生产中,允许每小时生产的产品中有缺点的零件最多有10个,那么机器的运转速度应控制在设么范围内?
【题目】某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量,分别记录抽查数据如下:
甲 | 102 | 101 | 99 | 98 | 103 | 98 | 99 |
乙 | 110 | 115 | 90 | 85 | 75 | 115 | 110 |
(1)这种抽样方法是哪一种?
(2)将两组数据用茎叶图表示.
(3)将两组数据进行比较,说明哪个车间产品较稳定.