题目内容
【题目】如图,在四棱锥中, , ∥,且 , , .
(Ⅰ)求证:平面⊥平面;
(Ⅱ)求直线与平面所成角的正弦值.
【答案】(I)证明见解析;(Ⅱ).
【解析】试题分析:(1)证明面面垂直,一般利用面面垂直判定定理,即从线面垂直进行论证,而线面垂直证明,往往需要多次利用线线垂直与线面垂直的转化,而线线垂直,有时可利用平几条件进行寻找与论证,如本题取中点E,利用平几知识得到四边形是矩形,从而得到,而易得,因此,进而有平面平面;(2)利用空间向量求线面角,首先建立空间直角坐标系:以A 为原点, 为轴, 为轴,建立空间直角坐标角系,设出各点坐标,利用方程组解出面的法向量,利用向量数量积求夹角,最后根据线面角与向量夹角互余得结论
试题解析:解:证明:(1)为中点, , ,且四边形是矩形, ,又平面,且,在平面中, 平面平面,又平面平面,平面平面.
(2)以A 为原点, 为轴, 为轴,建立空间直角坐标角系,
,
则
设平面的法向量,则,取,得,
设直线与平面所成的角为, ,
直线与平面所成的角的正弦值为.
【题目】某消费品企业销售部对去年各销售地的居民年收入(即此地所有居民在一年内的收入的总和)及其产品销售额进行抽样分析,收集数据整理如下:
销售地 | A | B | C | D |
年收入x(亿元) | 15 | 20 | 35 | 50 |
销售额y(万元) | 16 | 20 | 40 | 48 |
(1)在图a中作出这些数据的散点图,并指出y与x成正相关还是负相关?
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程?
(3)若B地今年的居民年收入将增长20%,预测B地今年的销售额将达到多少万元?
回归方程系数公式:,.
参考数据:,.
【题目】某校夏令营有3名男同学和3名女同学,其年级情况如下表:
一年级 | 二年级 | 三年级 | |
男同学 | A | B | C |
女同学 | X | Y | Z |
现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)
用表中字母列举出所有可能的结果
设为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件发生的概率.