题目内容
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,已知圆的参数方程为(为参数,).以原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程是.
(1)若直线与圆有公共点,试求实数的取值范围;
(2)当时,过点且与直线平行的直线交圆于两点,求的值.
【答案】(1) (2)
【解析】试题分析:(1)根据极坐标与普通方程的互化公式求出直线的直角坐标方程,消参得出圆的普通方程, 直线与圆有公共点,则圆心到直线的距离,即可求出范围;(2)将直线的参数方程代入曲线方程,根据t的几何意义求值即可.
试题解析:
(1)由,
得,
即,
故直线的直角坐标方程为.
由
得
所以圆的普通方程为.
若直线与圆有公共点,则圆心到直线的距离,即,
故实数的取值范围为.
(2)因为直线的倾斜角为,且过点,
所以直线的参数方程为(为参数),①
圆的方程为,②
联立①②,得,
设两点对应的参数分别为,
则,,
故.
【题目】如图,三棱柱中,侧面为菱形,在侧面上的投影恰为的中点,为的中点.
(Ⅰ)证明:∥平面;
(Ⅱ)若,在线段上是否存在点(不与,重合)使得直线与平面成角的正弦值为若存在,求出的值;若不存在,说明理由.
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费对年销售量(单位:)的影响.该公司对近5年的年宣传费和年销售量数据进行了研究,发现年宣传费(万元)和年销售量(单位:)具有线性相关关系,并对数据作了初步处理,得到下面的一些统计量的值.
(万元) | 2 | 4 | 5 | 3 | 6 |
(单位:) | 2.5 | 4 | 4.5 | 3 | 6 |
(1)根据表中数据建立年销售量关于年宣传费的回归方程;
(2)已知这种产品的年利润与,的关系为,根据(1)中的结果回答下列问题:
①当年宣传费为10万元时,年销售量及年利润的预报值是多少?
②估算该公司应该投入多少宣传费,才能使得年利润与年宣传费的比值最大.
附:问归方程中的斜率和截距的最小二乘估计公式分别为,.
参考数据:,.