题目内容
【题目】一个盒子内装有8张卡片,每张卡片上面写着1个数字,这8个数字各不相同,且奇数有3个,偶数有5个.每张卡片被取出的概率相等.
(Ⅰ)如果从盒子中一次随机取出2张卡片,并且将取出的2张卡片上的数字相加得到一个新数,求所得新数是偶数的概率;
(Ⅱ)现从盒子中一次随机取出1张卡片,每次取出的卡片都不放回盒子,若取出的卡片上写着的数是偶数则停止取出卡片,否则继续取出卡片.设取出了次才停止取出卡片,求的分布列和数学期望.
【答案】(1);(2)见解析.
【解析】试题分析:(1)得到偶数的情况有偶数加偶数,奇数加奇数,分别求出它们的种数,用古典概型求出概率;(2)由于奇数有3个,所以取出卡片的次数为1,2,3,4,再分别求出取这几个值时的概率,写出分布列,算出数学期望。
试题解析:(1)记 “任取2张卡片,将卡片上的数字相加得到的新数是偶数”为事件,
事件总数为,
因为偶数加偶数,奇数加奇数,都是偶数,则事件种数为,
得 . 所得新数是偶数的概率 .
(2) 所有可能的取值为1,2,3,4,
根据题意得
故的分布列为
1 | 2 | 3 | 4 | |
.
【题目】2015年12月,京津冀等地数城市指数“爆表”,北方此轮污染为2015年以来最严重的污染过程,为了探究车流量与的浓度是否相关,现采集到北方某城市2015年12月份某星期星期一到星期日某一时间段车流量与的数据如表:
时间 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期七 |
车流量(万辆) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
的浓度(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(1)由散点图知与具有线性相关关系,求关于的线性回归方程;
的浓度;
(ii)规定:当一天内的浓度平均值在内,空气质量等级为优;当一天内的浓度平均值在内,空气质量等级为良,为使该市某日空气质量为优或者为良,则应控制当天车流量在多少万辆以内?(结果以万辆为单位,保留整数)
参考公式:回归直线的方程是,其中, .
【题目】某研究机构追踪40名小学毕业生随年限与数学水平学习的情况.统计了年限与等级考试的平均成绩,如下列数据:
学习年限 | 2 | 3 | 4 | 5 | 6 |
等级成绩 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)已知与满足线性关系,试求年限与等级考试成绩的线性回归直线方程.(其中,)
(2)如果对40名学生“是否对数学学习感兴趣”进行调查,初中生和高中生对数学的喜欢程度如下联表(其中学习年限2年或3年的为初中阶段,年限为4年或5年或6年的为高中阶段)
喜欢 | 不喜欢 | 合计 | |
初中生 | 8 | 12 | 20 |
高中生 | 16 | 4 | 20 |
合计 | 24 | 16 | 40 |
根据上表计算,并说明是否有的把握认为“喜欢数学与学习年限有关”(其中 其中)
0.025 | 0.010 | 0.005 | |
5.024 | 6.635 | 7.897 |