题目内容
某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组,第二组,…,第五组,下图是按上述分组方法得到的频率分布直方图.
(1)根据频率分布直方图,估计这50名学生百米测试成绩的平均值;
(2)若从第一组、第五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1的概率.
已知是数列的前n项和,满足,正项等比数列的前n项和为,且满足.
(Ⅰ) 求数列{an}和{bn}的通项公式; (Ⅱ) 记,求数列{cn}的前n项和.
已知均为非负实数,且满足,则的最大值为( )
A. B. C. D.
已知函数,若是方程的根,则( )
A. B. C. D.
选修4-5:不等式选讲
已知使不等式成立.
(1)求满足条件的实数的取值集合;
(2)若,对,不等式恒成立,求的最小值.
函数的定义域为____________.
已知,给出下列四个结论:
①②③④
其中正确结论的序号是( )
A.①② B.②③ C.②④ D.③④
已知定义域为的偶函数,其导函数为,对任意,均满足:.若,则不等式的解集是( )
A. B.
C. D.
函数的定义域为___________(用集合或区间表示)。