题目内容
从某校参加2012年全国高中数学联赛预赛的450名同学中,随机抽取若干名同学,将他们的成绩制成频率分布表,下面给出了此表中部分数据.
(1)根据表中已知数据,你认为在①、②、③处的数值分别为 , , .
(2)补全在区间 [70,140] 上的频率分布直方图;
(3)若成绩不低于100分的同学能参加决赛,那么可以估计该校大约有多少学生能参加决赛?
(1)50;0.04;0.10.(2)如图.
(3)207
解析试题分析:(1)50;0.04;0.10. ……6分
(2)如图.
……10分
(3)在随机抽取的名同学中有名出线,.
答:在参加的名中大概有207名同学出线. ……14分
考点:本题考查了频率分布直方图的画法及运用。
点评:本题第(1)利用了频率分布表的频率之和为1,再根据比例关系即求得频数,根据此二数据即可顺利补充完整图.
练习册系列答案
相关题目
(本题满分12分)
某车间为了规定工时定额,需要确定加共某零件所花费的时间,为此作了四次实验,得到的数据如下:
零件的个数x(个) | 2 | 3 | 4 | 5 |
加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
(2)试预测加工10个零件需要多少时间?
一次考试中,五名学生的数学、物理成绩如下表所示:
学生 | A1 | A2 | A3 | A4 | A5 |
数学(x分 | 89 | 91 | 93 | 95 | 97 |
物理(y分) | 87 | 89 | 89 | 92 | 93 |
(1)请在图的直角坐标系中作出这些数据的散点图,并求出这些数据的同归方程;
(2)要从4名数学成绩在90分以上的同学中选2人参加一项活动,以X表示选中的同学的物理成绩高于90分的人数,求随机变量X的分布列及数学期望E(X)的值.