题目内容
【题目】已知函数.
(1)讨论的单调性;
(2)当时,设函数,若对任意的恒成立,求的最小值.
【答案】(1)单调递减区间为,单调递增区间为;(2)的最小值为-3.
【解析】
(1)由,可得,根据导数与单调性的关系,即判断单调性;
(2)由,因为对任意的恒成立,对任意的恒成立,构造函数,可得,由,对进行分析,利用函数零点存在定理,可知一定存在唯一的,使得,进而求出的单调性,由此即可求出结果.
(1)由题意,函数,可得,
当时,;
当时,,
故的单调递减区间为,单调递增区间为
(2)由,
因为对任意的恒成立,
即对任意的恒成立,
令,则,
因为,所以.
又由函数,可得,所以函数单调递增,
因为,,
所以一定存在唯一的,使得,即,即,
所以在上单调递增,在上单调递减,
所以.
因为,所以的最小值为-3.
【题目】某学校数学建模小组为了研究双层玻璃窗户中每层玻璃厚度(每层玻璃的厚度相同)及两层玻璃间夹空气层厚度对保温效果的影响,利用热传导定律得到热传导量满足关系式,其中玻璃的热传导系数焦耳/(厘米·度),不流通、干燥空气的热传导系数焦耳/(厘米·度),为室内外温度差,值越小,保温效果越好,现有4种型号的双层玻璃窗户,具体数据如下表:
型号 | 每层玻璃厚度(单位:厘米) | 玻璃间夹空气层厚度(单位:厘米) |
型 | 0.4 | 3 |
型 | 0.3 | 4 |
型 | 0.5 | 3 |
型 | 0.4 | 4 |
则保温效果最好的双层玻璃的型号是( )
A.型B.型C.型D.型
【题目】从年底开始,非洲东部的肯尼亚等国家爆发出了一场严重的蝗虫灾情.目前,蝗虫已抵达乌干达和坦桑尼亚,并向西亚和南亚等地区蔓延.蝗虫危害大,主要危害禾本科植物,能对农作物造成严重伤害,每只蝗虫的平均产卵数和平均温度有关,现收集了以往某地的组数据,得到下面的散点图及一些统计量的值.
平均温度 | |||||||
平均产卵数个 |
表中,.
(1)根据散点图判断,与(其中为自然对数的底数)哪一个更适宜作为平均产卵数关于平均温度的回归方程类型?(给出判断即可,不必说明理由)并由判断结果及表中数据,求出关于的回归方程.(结果精确到小数点后第三位)
(2)根据以往统计,该地每年平均温度达到以上时蝗虫会造成严重伤害,需要人工防治,其他情况均不需要人工防治,记该地每年平均温度达到以上的概率为.
①记该地今后年中,恰好需要次人工防治的概率为,求取得最大值时相应的概率;
②根据①中的结论,当取最大值时,记该地今后年中,需要人工防治的次数为,求的数学期望和方差.
附:对于一组数据、、、,其回归直线的斜率和截距的最小二乘法估计分别为:,.