题目内容

【题目】某闯关游戏共有两关,游戏规则:先闯第一关,当第一关闯过后,才能进入第二关,两关都闯过,则闯关成功,且每关各有两次闯关机会.已知闯关者甲第一关每次闯过的概率均为,第二关每次闯过的概率均为.假设他不放弃每次闯关机会,且每次闯关互不影响.

(1)求甲恰好闯关3次才闯关成功的概率;

(2)记甲闯关的次数为,求随机变量的分布列和期望.。

【答案】(1) (2)见解析

【解析】

1)先分类,再分别根据独立事件概率乘法公式求解,最后求和得结果,(2)先确定随机变量,再分别求对应概率,列表得分布列,根据数学期望公式得结果.

解:(1)设事件为“甲恰好闯关次才闯关成功的概率”,则有

(2)由已知得:随机变量的所有可能取值为

所以,

.

从而

2

3

4

.

练习册系列答案
相关题目

【题目】某产品自生产并投入市场以来,生产企业为确保产品质量,决定邀请第三方检测机构对产品进行质量检测,并依据质量指标来衡量产品的质量.当时,产品为优等品;当时,产品为一等品;当时,产品为二等品.第三方检测机构在该产品中随机抽取500件,绘制了这500件产品的质量指标的条形图.用随机抽取的500件产品作为样本,估计该企业生产该产品的质量情况,并用频率估计概率.

(1)从该企业生产的所有产品中随机抽取1件,求该产品为优等品的概率;

(2)现某人决定购买80件该产品.已知每件成本1000元,购买前,邀请第三方检测机构对要购买的80件产品进行抽样检测.买家、企业及第三方检测机构就检测方案达成以下协议:从80件产品中随机抽出4件产品进行检测,若检测出3件或4件为优等品,则按每件1600元购买,否则按每件1500元购买,每件产品的检测费用250元由企业承担.记企业的收益为元,求的分布列与数学期望;

(3)商场为推广此款产品,现面向意向客户推出“玩游戏,送大奖”活动.客户可根据抛硬币的结果,操控机器人在方格上行进,已知硬币出现正、反面的概率都是,方格图上标有第0格、第1格、第2格、……、第50格.机器人开始在第0格,客户每掷一次硬币,机器人向前移动一次,若掷出正面,机器人向前移动一格(从),若掷出反面,机器人向前移动两格(从),直到机器人移到第49格(胜利大本营)或第50格(失败大本营)时,游戏结束,若机器人停在“胜利大本营”,则可获得优惠券.设机器人移到第格的概率为,试证明是等比数列,并解释此方案能否吸引顾客购买该款产品.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网