题目内容
【题目】某闯关游戏共有两关,游戏规则:先闯第一关,当第一关闯过后,才能进入第二关,两关都闯过,则闯关成功,且每关各有两次闯关机会.已知闯关者甲第一关每次闯过的概率均为,第二关每次闯过的概率均为
.假设他不放弃每次闯关机会,且每次闯关互不影响.
(1)求甲恰好闯关3次才闯关成功的概率;
(2)记甲闯关的次数为,求随机变量
的分布列和期望.。
【答案】(1) (2)见解析
【解析】
(1)先分类,再分别根据独立事件概率乘法公式求解,最后求和得结果,(2)先确定随机变量,再分别求对应概率,列表得分布列,根据数学期望公式得结果.
解:(1)设事件为“甲恰好闯关
次才闯关成功的概率”,则有
,
(2)由已知得:随机变量的所有可能取值为
,
所以,,
,
.
从而
2 | 3 | 4 | |
.
【题目】新高考3+3最大的特点就是取消文理科,除语文、数学、外语之外,从物理、化学、生物、政治、历史、地理这6科中自由选择三门科目作为选考科目.某研究机构为了了解学生对全理(选择物理、化学、生物)的选择是否与性别有关,觉得从某学校高一年级的650名学生中随机抽取男生,女生各25人进行模拟选科.经统计,选择全理的人数比不选全理的人数多10人.
(1)请完成下面的2×2列联表;
选择全理 | 不选择全理 | 合计 | |
男生 | 5 | ||
女生 | |||
合计 |
(2)估计有多大把握认为选择全理与性别有关,并说明理由;
(3)现从这50名学生中已经选取了男生3名,女生2名进行座谈,从中抽取2名代表作问卷调查,求至少抽到一名女生的概率.
附:,其中
.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】2019年国际篮联篮球世界杯,将于2019年在的北京、广州、南京、上海、武汉、深圳、佛山、东莞八座城市举行.为了宣传世界杯,某大学从全校学生中随机抽取了名学生,对是否收看篮球世界杯赛事的情况进行了问卷调查,统计数据如下:
会收看 | 不会收看 | |
男生 | 60 | 20 |
女生 | 20 | 20 |
(1)根据上表说明,能否有的把握认为收看篮球世界杯赛事与性别有关?
(2)现从参与问卷调查且收看篮球世界杯赛事的学生中,采用按性别分层抽样的方法选取人参加2019年国际篮联篮球世界杯赛志愿者宣传活动.
(i)求男、女学生各选取多少人;
(ii)若从这人中随机选取
人到校广播站开展2019年国际篮联篮球世界杯赛宣传介绍,求恰好选到
名男生的概率.
附:,其中
.