题目内容

3.已知直线kx-y=k-1与ky-x=2k的交点在第二象限,则实数k的取值范围是(  )
A.(0,$\frac{1}{2}$)B.($\frac{1}{2}$,1)C.(0,1)D.[1}

分析 联立$\left\{\begin{array}{l}{kx-y=k-1}\\{ky-x=2k}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{k}{k-1}<0}\\{y=\frac{2{k}^{2}+k-1}{{k}^{2}-1}>0}\end{array}\right.$,解出即可.

解答 解:联立$\left\{\begin{array}{l}{kx-y=k-1}\\{ky-x=2k}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{k}{k-1}<0}\\{y=\frac{2{k}^{2}+k-1}{{k}^{2}-1}>0}\end{array}\right.$,解得$0<k<\frac{1}{2}$.
∴实数k的取值范围是$(0,\frac{1}{2})$.
故选:A.

点评 本题考查了直线的交点、不等式的解法,考查了计算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网