题目内容
【题目】已知函数f(x)=log3(9x+1)+mx为偶函数,g(x)= 为奇函数.
(Ⅰ)求m﹣n的值;
(Ⅱ)若函数y=f(x)与 的图象有且只有一个交点,求实数a的取值范围.
【答案】解:(Ⅰ)∵函数f(x)=log3(9x+1)+mx为偶函数,∴f(﹣x)=f(x),则log3(9﹣x+1)﹣mx=log3(9x+1)+mx,
即2mx=log3(9﹣x+1)﹣log3(9x+1)
又右边=log3 ﹣log3(9x+1)=log39﹣x=log33﹣2x=﹣2x,
∴2mx=﹣2x,解得m=﹣1,
∵g(x)= 为奇函数.
∴g(0)=0,则g(0)= =0,解得n=﹣1,
∴m﹣n=0,即m﹣n的值0;
(Ⅱ)由(Ⅰ)知:f(x)=log3(9x+1)﹣x,g(x)= ,
则 =log3( + ﹣4)+log3a
=log3(3x﹣4)+log3a=log3(3x﹣4)a,
∴y=log3(3x﹣4)a,且(a>0,3x>4)
即f(x)=log3(9x+1)﹣x与y=log3(3x﹣4)a的图象有且只有一个交点,
∴log3(9x+1)﹣x=log3(3x﹣4)a有且仅有一个解,
∵log3(9x+1)﹣x=log3(9x+1)﹣log33x= ,
∴3x+ =(3x﹣4)a有且仅有一解,
设t=3x , t>4,代入上式得, ,
则a= = ,令y= ,
则y′=
= ,
∵函数y=﹣2t2﹣t+2在(4,+∞)上递减,且y<0,
∴y′<0,则函数y= 在(4,+∞)上递减,
∴函数y= 在(4,+∞)上的值域是(0,+∞),
故实数a的取值范围是a>0
【解析】(Ⅰ)根据题意和函数奇偶性的性质分别列出方程,求出m和n的值,即可求出m﹣n的值;(Ⅱ)由(I)和对数的运算性质化简条件中的函数y,由对数函数的性质求出变量的范围,利用换元法构造函数,由导数与函数的单调性关系,判断出函数的单调性,并求出函数的值域,从而求出实数a的取值范围.
【考点精析】通过灵活运用函数奇偶性的性质,掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇即可以解答此题.
【题目】为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:
场数 | 9 | 10 | 11 | 12 | 13 | 14 |
人数 | 10 | 18 | 22 | 25 | 20 | 5 |
将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.
(1)根据已知条件完成下面的2×2列联表,并据此资料我们能否有95%的把握认为“歌迷”与性别有关?
非歌迷 | 歌迷 | 合计 | |
男 | |||
女 | |||
合计 |
(2)将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率.
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
附:K2=.