题目内容

【题目】关于函数,给出下列命题:

若函数f(x)是R上周期为3的偶函数,且满足f(1)=1,则f(2)-f(-4)=0;

若函数f(x)满足f(x+1)f(x)=2 017,则f(x)是周期函数;

若函数g(x)=是偶函数,则f(x)=x+1;

函数y=的定义域为.

其中正确的命题是________.(写出所有正确命题的序号)

【答案】①②

【解析】因为f(x+3)=f(x)且f(-x)=f(x),所以f(2)=f(-1+3)=f(-1)=f(1)=1,f(-4)=f(-1)=f(1)=1,故f(2)-f(-4)=0,正确.

因为f(x+1)f(x)=2 017,所以f(x+1)=,f(x+2)==f(x).所以f(x)是周期为2的周期函数,正确.

令x<0,则-x>0,g(-x)=-x-1.又g(x)为偶函数,所以g(x)=g(-x)=-x-1.即f(x)=-x-1,不正确.

要使函数有意义,需满足

即0<|2x-3|≤1,

所以1≤x≤2且x≠,即函数的定义域为不正确.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网