题目内容
【题目】已知双曲线(b>0)的左、右焦点分别为,其一条渐近线方程为y=x,点P在该双曲线上,且,则=( )
A. 4 B. 4 C. 8 D.
【答案】D
【解析】分析:先求出b,c,设|PF1|=m,|PF2|=n,PF1,PF2的夹角为α,则mncosα=8,利用余弦定理,计算mn=20,可得cosα,求出sinα,利用S△PF1F2=mnsinα,即可得出结论.
详解::∵双曲线(b>0)的一条渐近线方程为y=x,∴
∴c=3,设|PF1|=m,|PF2|=n,PF1,PF2的夹角为α,则mncosα=8,
∴36=m2+n2-2mncosα,
∴m2+n2=52,∵|m-n|=2,∴mn=20,
∴cosα=,∴sinα=,
∴S△PF1F2=mnsinα=
×20×=.
故选:D.
【题目】已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,学校决定利用随机数表法从中抽取100人进行成绩抽样调查,先将800人按001,002,…,800进行编号.
(1)如果从第8行第7列的数开始向右读,请你依次写出最先检查的3个人的编号;(下面摘取了第7行到第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)抽取的100人的数学与地理的水平测试成绩如下表:
人 数 | 数 学 | |||
优 秀 | 良 好 | 及 格 | ||
地 理 | 优 秀 | 7 | 20 | 5 |
良 好 | 9 | 18 | 6 | |
及 格 | a | 4 | b |
成绩分为优秀、良好、及格三个等级;横向、纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有.
①若在该样本中,数学成绩优秀率是,求 的值:
②在地理成绩及格的学生中,已知,,求数学成绩优秀的人数比及格的人数少的概率.