题目内容
【题目】如图,菱形与正三角形的边长均为2,它们所在平面互相垂直,平面,平面.
(1)求证:平面平面;
(2)若,求二面角的大小.
【答案】(1)见证明;(2)
【解析】
(1)由菱形的性质可得,由线面垂直的性质可得,从而可得平面,再由面面垂直的判定定理可得结果;(2)设,以为原点,为轴,为轴,过作平面的垂线为轴,建立空间直角坐标系,利用向量垂直数量积为零列方程求得平面的法向量,结合平面的法向量,利用空间向量夹角余弦公式可得结果.
(1)∵菱形,∴,
∵平面,∴,
∵,∴平面,
∵平面,∴平面平面.
(2)设,以为原点,为轴,为轴,
过作平面的垂线为轴,建立空间直角坐标系,
则,,,
,,
设平面的法向量,
则,取,得,
平面的法向量,
设二面角的大小为,
则,
∴.
∴二面角的大小为.
练习册系列答案
相关题目
【题目】在新的劳动合同法出台后,某公司实行了年薪制工资结构改革.该公司从2008年起,每人的工资由三个项目构成,并按下表规定实施:
项目 | 金额[元/(人年)] | 性质与计算方法 |
基础工资 | 2007年基础工资为20000元 | 考虑到物价因素,决定从2008年 起每年递增10%(与工龄无关) |
房屋补贴 | 800 | 按职工到公司年限计算,每年递增800元 |
医疗费 | 3200 | 固定不变 |
如果该公司今年有5位职工,计划从明年起每年新招5名职工.
(1)若今年算第一年,将第n年该公司付给职工工资总额y(万元)表示成年限n的函数;
(2)若公司每年发给职工工资总额中,房屋补贴和医疗费的总和总不会超过基础工资总额的p%,求p的最小值.