题目内容

设数列{}是等差数列,数列{}的前项和满足,,

(1)求数列{}和{}的通项公式:
(2)设为数列{}的前项和,求

(1)(2)

解析试题分析:(1)根据公式时,可推导出,根据等比数列的定义可知数列是公比为的等比数列,由等比数列的通项公式可求。从而可得的值。由的值可得公差,从而可得首项。根据等差数列的通项公式可得。(2)用错位相减法求数列的和:先将的式子列出,然后左右两边同乘以等比数列的公比,并将等式右边空出一个位置,然后将两个式子相减,用等比数列的前项和公式整理计算,可得
解(1)由     (1)
知当=1时,,
2时,     (2)
(1) (2)得  
    (2) 是以为首项以为公比的等比数列,
                      4分
    
.              6分
(2)=.                     7
           ①
        ②
②得
=.                    &

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网