题目内容

【题目】函数y=f(x)的图象与直线x=1的交点有几个(
A.1
B.0
C.0或1
D.0或2

【答案】C
【解析】解:根据函数y=f(x)的定义,当x在定义域内任意取一个值,都有唯一的一个函数值f(x)与之对应,函数y=f(x)的图象与直线x=1有唯一交点.
当x不在定义域内时,函数值f(x)不存在,函数y=f(x)的图象与直线x=1没有交点.
故函数y=f(x)的图象与直线x=1至多有一个交点,即函数y=f(x)的图象与直线x=1的交点的个数是 0或1,
故选C.
【考点精析】根据题目的已知条件,利用函数的概念及其构成要素的相关知识可以得到问题的答案,需要掌握函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网