题目内容
设f(x)是R上的奇函数,且f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(75)等于( )
A.-0 5 | B.0 5 | C. 1 5 | D.-1 5 |
A
分析:题目中条件:“f(x+2)=-f(x),”可得f(x+4)=f(x),故f(7.5)=f(-0.5)=-f(0.5)=-0.5.
解答:解:∵f(x+2)=-f(x),∴可得f(x+4)=f(x),
∵f(x)是(-∞,+∞)上的奇函数
∴f(-x)=-f(x).
∴故f(7.5)=f(-0.5)=-f(0.5)=-0.5.
故选A.
解答:解:∵f(x+2)=-f(x),∴可得f(x+4)=f(x),
∵f(x)是(-∞,+∞)上的奇函数
∴f(-x)=-f(x).
∴故f(7.5)=f(-0.5)=-f(0.5)=-0.5.
故选A.
练习册系列答案
相关题目