题目内容
【题目】已知为坐标原点,抛物线:与直线:交于点,两点,且.
(1)求抛物线的方程;
(2)线段的中点为,过点且斜率为的直线交抛物线于,两点,若直线,分别与直线交于,两点,当时,求斜率的值.
【答案】(1)(2)
【解析】
(1)根据数量积求出参数的值即可得到所求方程.(2)求出点的坐标为,然后再求出点,的坐标,进而得到直线,的方程,于是得到的坐标,最后根据可求出斜率的值.
(1)由消去整理得,
∵直线与抛物线交于两点,
∴,解得或(舍去).
设,,则,
∴,
∵,
∴,解得,符合题意.
∴抛物线方程为:.
(2)由(1)得,
∴,,
∴,
∴,中点为.
设过点斜率为的直线方程为,即,
由消去整理得,
其中,故.
设,,
则,,
直线的方程为,令,得,
∴,
同理得,
∴,
解得,满足题意.
∴斜率的值为.
【题目】前些年有些地方由于受到提高的影响,部分企业只重视经济效益而没有树立环保意识,把大量的污染物排放到空中与地下,严重影响了人们的正常生活,为此政府进行强制整治,对不合格企业进行关闭、整顿,另一方面进行大量的绿化来净化和吸附污染物.通过几年的整治,环境明显得到好转,针对政府这一行为,老百姓大大点赞.
(1)某机构随机访问50名居民,这50名居民对政府的评分(满分100分)如下表:
分数 | ||||||
频数 | 2 | 3 | 11 | 14 | 11 | 9 |
请在答题卡上作出居民对政府的评分频率分布直方图:
(2)当地环保部门随机抽测了2018年11月的空气质量指数,其数据如下表:
空气质量指数() | 0-50 | 50-100 | 100-150 | 150-200 |
天数 | 2 | 18 | 8 | 2 |
用空气质量指数的平均值作为该月空气质量指数级别,求出该月空气质量指数级别为第几级?(同一组数据用该组数据的区间中点值作代表,将频率视为概率)(相关知识参见附表)
(3)空气受到污染,呼吸系统等疾病患者最易感染,根据历史经验,凡遇到空气轻度污染,小李每天会服用有关药品,花费50元,遇到中度污染每天服药的费用达到100元.环境整治前的2015年11月份小李因受到空气污染患呼吸系统等疾病花费了5000元,试估计2018年11月份(参考(2)中表格数据)小李比以前少花了多少钱的医药费?
附:
空气质量指数() | 0-50 | 50-100 | 100-150 | 150-200 | 200-300 | |
空气质量指数级别 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | Ⅵ |
空气质量指数 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |