题目内容
设函数f(x)=ex+x-2,g(x)=lnx+x2-3.若实数a、b满足f(a)=0,g(b)=0,则g(a)、f(b)、0三个数的大小关系为________.
g(a)<0<f(b)
易知f(x)是增函数,g(x)在(0,+∞)上也是增函数,由于f(a)=0,而f(0)=-1<0,f(1)=e-1>0,所以0<a<1;又g(1)=-2<0,g(2)=ln2+1>0,所以1<b<2,所以f(b)>0,g(a)<0,故g(a)<0<f(b).
练习册系列答案
相关题目