题目内容

已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是(  )
A、(2,+∞)B、(1,+∞)C、(-∞,-2)D、(-∞,-1)
考点:函数零点的判定定理
专题:综合题,导数的概念及应用
分析:分类讨论:当a≥0时,容易判断出不符合题意;当a<0时,由于而f(0)=1>0,x→+∞时,f(x)→-∞,可知:存在x0>0,使得f(x0)=0,要使满足条件f(x)存在唯一的零点x0,且x0>0,则必须极小值f(
2
a
)>0,解出即可.
解答:解:当a=0时,f(x)=-3x2+1=0,解得x=±
3
3
,函数f(x)有两个零点,不符合题意,应舍去;
当a>0时,令f′(x)=3ax2-6x=3ax(x-
2
a
)=0,解得x=0或x=
2
a
>0,列表如下:
 x (-∞,0) 0(0,
2
a
 
2
a
2
a
,+∞) 
 f′(x)+ 0- 0+
 f(x) 单调递增 极大值 单调递减 极小值 单调递增
∵x→-∞,f(x)→-∞,而f(0)=1>0,
∴存在x<0,使得f(x)=0,不符合条件:f(x)存在唯一的零点x0,且x0>0,应舍去.
当a<0时,f′(x)=3ax2-6x=3ax(x-
2
a
)=0,解得x=0或x=
2
a
<0,列表如下:
 x (-∞,
2
a
 
2
a
2
a
,0)
0(0,+∞)
 f′(x)- 0+ 0-
 f(x) 单调递减 极小值 单调递增 极大值 单调递减
而f(0)=1>0,x→+∞时,f(x)→-∞,
∴存在x0>0,使得f(x0)=0,
∵f(x)存在唯一的零点x0,且x0>0,
∴极小值f(
2
a
)>0,化为a2>4,
∵a<0,∴a<-2.
综上可知:a的取值范围是(-∞,-2).
故选:C.
点评:本题考查了利用导数研究函数的单调性极值与最值、分类讨论的思想方法,考查了推理能力和计算能力,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网