题目内容
【题目】已知函数有两个零点、,,则下面说法不正确的是( )
A.B.
C.D.有极小值点,且
【答案】C
【解析】
先证明出对数平均不等式,由题意得出,将两式作差结合对数平均不等式可判断出A、B选项的正误,利用导数分析函数的单调性,结合该函数的极值以及该函数有两个零点可判断出选项的正误,求出极值点,将中两等式相加可判断D选项的正误.
先证明对数平均不等式.
先考虑不等式,设,
即证,即证,令,即证不等式.
构造函数,则,
所以,函数在上单调递增,则,
当,且时,;
接下来考虑不等式,设,
即证,即证,设,即证不等式.
构造函数,则,
所以,函数在上单调递增,则,
当,且时,有.
即当,且时,.
对于C选项,,.
①当时,对于任意恒成立,此时函数在上单调递增,该函数最多有一个零点;
②当时,令,得.
当时,,当时,.
所以,函数在上单调递减,在上单调递增.
所以,函数在处取得极小值,
由于该函数有两个零点,则,
即,解得,C选项错误;
对于A、B选项,由于函数有两个零点、,且,
由于,则,,且有,
则,两个等式两边取自然对数得,
两式相减得,,
由对数平均不等式得,即,
,,A、B选项都正确;
对于D选项,由C选项可知,,
将中两个等式相加得,
,即,D选项正确.
故选:C.
练习册系列答案
相关题目