题目内容
函数 在处的切线与两坐标轴围成的三角形的面积为__________.
如图,在
中,两条直角边分别为
,
为
内一点,
,若
,则
__________.
如图,曲线由曲线和曲线组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点.
(1)若,求曲线的方程;
(2)如图,作直线平行于曲线的渐近线,交曲线于点,求证:弦的中点必在曲线的另一条渐近线上;
(3)对于(1)中的曲线,若直线过点交曲线于点,求的面积的最大值.
有一长、宽分别为、的矩形游泳池,一名工作人员在池边巡逻,某时刻出现在池边任一位置可能性相同,一人在池中心(对角线交点)处呼唤工作人员,其声音可传出,则工作人员能及时听到呼唤(出现在声音可传到区域)的概率是( )
A. B. C. D.
底面为菱形的直棱柱中,分别为棱的中点.
(1)在图中作一个平面,使得,且平面.(不必给出证明过程,只要求作出与直棱柱的截面).
(2)若,求点到所作截面的距离.
经过双曲线的左焦点作倾斜角为30°的直线,与双曲线的右支交于点,若以为直径的圆恰好经过双曲线的右焦点,则双曲线的离心率为( )
A. B. 2 C. D.
满足
的集合
的个数是 ( )
A. 2 B. 3 C. 4 D. 5
已知圆上到直线的距离等于的点恰有个,则实数的值为( )
A. B. C. 或 D. 或
已知一个三角形的三边长分别是 ,一只蚂蚁在其内部爬行,若不考虑蚂蚁的大小,则某时刻该蚂蚁距离三角形的三个顶点的距离均超过 的概率是( )