题目内容

设函数f(x)=ax+cosx,x∈[0,π]。
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设f(x)≤1+sinx,求a的取值范围。

【命题意图】本试题考查了导数在研究函数中的运用。第一就是函数中有三角函数,要利用三角函数的有界性,求解单调区间。另外就是运用导数证明不等式问题的构造函数思想的运用。
【点评】试题分为两问,题面比较简单,给出的函数比较新颖,因为里面还有三角函数,,这一点对于同学们来说比较有点难度,不同于平时的练习,相对来说比较做的少。但是解决的关键还是要看导数的符号的实质不变,求解单调区间。第二问中,运用构造函数的思想,证明不等式,一直以来是个难点,那么这类问题的关键是找到合适的函数,来运用导数证明最值问题大于零或者小于零得到解决。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网