题目内容
【题目】已知椭圆:的短轴长为2,离心率为.
(1)求椭圆的标准方程;
(2)过点且不过点的直线与椭圆交于,两点,直线与直线交于点.
(i)若轴,求直线的斜率;
(ii)判断直线与直线的位置关系,并说明理由.
【答案】(1);(2)(i),(ii),理由见解析
【解析】
(1)根据基本量的关系列式求解即可.
(2) (i)当轴时,可求得的坐标,进而求得直线的方程与的坐标,进而求得直线的斜率.
(ii)联立直线与椭圆的方程, 设,,根据题意求出直线的方程与的坐标,进而得出直线的斜率表达式,代入韦达定理的关系化简即可.
(1)由,,故,得,,
∴椭圆方程为:;
(2)可设:,
①轴,则:,当在轴上方时有,,
∴的方程为:,∴,
∴.
当在轴下方时有,,
∴的方程为:,∴,
∴.
综上有.
②,证明如下:
把代入得,
设,,则,,
∴:,∴,
∴,
由,∴,
∴.
【题目】某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):
锻炼人次 空气质量等级 | [0,200] | (200,400] | (400,600] |
1(优) | 2 | 16 | 25 |
2(良) | 5 | 10 | 12 |
3(轻度污染) | 6 | 7 | 8 |
4(中度污染) | 7 | 2 | 0 |
(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;
(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);
(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?
人次≤400 | 人次>400 | |
空气质量好 | ||
空气质量不好 |
附:,
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
【题目】在脱贫攻坚中,某市教育局定点帮扶前进村户贫困户.驻村工作队对这户村民的贫困程度以及家庭平均受教育程度进行了调査,并将该村贫困户按贫困程度分为“绝对贫困户”与“相对贫困户”,同时按家庭平均受教育程度分为“家庭平均受教育年限年”与“家庭平均受教育年限年”,具体调査结果如下表所示:
平均受教育年限年 | 平均受教育年限年 | 总计 | |
绝对贫困户 | 10 | 40 | 50 |
相对贫困户 | 20 | 30 | 50 |
总计 | 30 | 70 | 100 |
(1)为了参加扶贫办公室举办的贫困户“谈心谈话”活动,现通过分层抽样从“家庭平均受教育年限年”的户贫困户中任意抽取户,再从所抽取的户中随机抽取户参加“谈心谈话”活动,求至少有户是绝对贫困户的概率;
(2)根据上述表格判断:是否有的把握认为贫困程度与家庭平均受教育程度有关?
参考公式:
参考数据:
0.050 | 0.010 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |