题目内容
【题目】如图,在中,,,,分别为,的中点是由绕直线旋转得到,连结,,.
(1)证明:平面;
(2)若,棱上是否存在一点,使得?若存在,确定点 的位置;若不存在,请说明理由.
【答案】(1)见解析(2)存在,为的中点
【解析】
(1)要证平面,则证和;证由平面几何知识可得,证,只需证,即证平面,利用线面垂直判定可得.
(2),等体积转化,由且,则可解.
(1)依题意得,
所以
因为分别为,的中点,
所以
因为
所以
又因为由沿旋转得到,
所以,平面,平面
则平面
所以,即
所以平面
解法一:(2)若,
则
因为且
所以,
又
所以为的中点
解法二:(2)因为,,,
所以,,
又,所以
由(1)知平面
若,
则,
所以
由(1)知,在中,
,即
解得
所以为正三角形,
即,所以M为的中点
【题目】年上半年,随着新冠肺炎疫情在全球蔓延,全球超过个国家或地区宣布进人紧急状态,部分国家或地区直接宣布“封国”或“封城”,随着国外部分活动进入停摆,全球经济缺乏活力,一些企业开始倒闭,下表为年第一季度企业成立年限与倒闭分布情况统计表:
企业成立年份 | 2019 | 2018 | 2017 | 2016 | 2015 |
企业成立年限 | 1 | 2 | 3 | 4 | 5 |
倒闭企业数量(万家) | 5.23 | 4.70 | 3.72 | 3.12 | 2.42 |
倒闭企业所占比例 | 21.8% | 19.6% | 15.5% | 13.0% | 10.1% |
根据上表,给出两种回归模型:
模型①:建立曲线型回归模型,求得回归方程为;
模型②:建立线性回归模型.
(1)根据所给的统计量,求模型②中关于的回归方程;
(2)根据下列表格中的数据,比较两种模型的相关指数,并选择拟合精度更高、更可靠的模型,预测年成立的企业中倒闭企业所占比例(结果保留整数).
回归模型 | 模型① | 模型② |
回归方程 | ||
参考公式:,;.
参考数据:,,,,,.
【题目】BMI指数(身体质量指数,英文为BodyMassIndex,简称BMI)是衡量人体胖瘦程度的一个标准,BMI=体重(kg)/身高(m)的平方.根据中国肥胖问题工作组标准,当BMI≥28时为肥胖.某地区随机调查了1200名35岁以上成人的身体健康状况,其中有200名高血压患者,被调查者的频率分布直方图如下:
(1)求被调查者中肥胖人群的BMI平均值;
(2)填写下面列联表,并判断是否有99.9%的把握认为35岁以上成人患高血压与肥胖有关.
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
肥胖 | 不肥胖 | 合计 | |
高血压 | |||
非高血压 | |||
合计 |
附:,
【题目】指数是用体重公斤数除以身高米数的平方得出的数字,是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准.对于高中男体育特长生而言,当数值大于或等于20.5时,我们说体重较重,当数值小于20.5时,我们说体重较轻,身高大于或等于我们说身高较高,身高小于170cm我们说身高较矮.
(Ⅰ)已知某高中共有32名男体育特长生,其身高与指数的数据如散点图,请根据所得信息,完成下述列联表,并判断是否有的把握认为男生的身高对指数有影响.
身高较矮 | 身高较高 | 合计 | |
体重较轻 | |||
体重较重 | |||
合计 |
(Ⅱ)①从上述32名男体育特长生中随机选取8名,其身高和体重的数据如表所示:
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
体重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
根据最小二乘法的思想与公式求得线性回归方程为.利用已经求得的线性回归方程,请完善下列残差表,并求(解释变量(身高)对于预报变量(体重)变化的贡献值)(保留两位有效数字);
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
体重(kg) | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
残差 |
②通过残差分析,对于残差的最大(绝对值)的那组数据,需要确认在样本点的采集中是否有人为的错误,已知通过重新采集发现,该组数据的体重应该为.小明重新根据最小二乘法的思想与公式,已算出,请在小明所算的基础上求出男体育特长生的身高与体重的线性回归方程.
参考数据:
,,,,
参考公式:,,,,.
0.10 | 0.05 | 0.01 | 0.005 | |
2.706 | 3.811 | 6.635 | 7.879 |