ÌâÄ¿ÄÚÈÝ
ÊýÁÐ{an}µÄÇ°nÏîºÍ¼ÇΪSn£¬Ç°knÏîºÍ¼ÇΪSkn£¨n£¬k¡ÊN*£©£¬¶Ô¸ø¶¨µÄ³£Êýk£¬ÈôS(k+1)n |
Skn |
£¨1£©ÒÑÖªSn=
4 |
3 |
2 |
3 |
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬ÊýÁÐan=2cn£¬ÇóÖ¤ÊýÁÐcnÊÇÒ»¸ö¡°1 ÀàºÍ¿Æ±ÈÊýÁС±£¨4·Ö£©£»
£¨3£©ÉèµÈ²îÊýÁÐ{bn}ÊÇÒ»¸ö¡°kÀàºÍ¿Æ±ÈÊýÁС±£¬ÆäÖÐÊ×Ïîb1£¬¹«²îD£¬Ì½¾¿b1ÓëDµÄÊýÁ¿¹Øϵ£¬²¢Ð´³öÏàÓ¦µÄ³£Êýt=f£¨k£©£®
·ÖÎö£º£¨1£©ÀûÓÃan=Sn-Sn-1¿ÉÒÔÍƵ¼³öÊýÁÐanΪµÈ±ÈÊýÁУ¬È»ºó½«a1=2£¬q=4´úÈëµÈ±ÈÊýÁеÄͨÏʽ¼´¿ÉÇó³öÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©¸ù¾Ý£¨1£©ÖÐÇó³öµÄanµÄͨÏʽ±ã¿ÉÇó³öcnµÄͨÏʽΪcn=2n-1£¬È»ºóÇó³ö
Ϊ¶¨Öµ£¬±ã¿ÉÖ¤Ã÷ÊýÁÐcnÊÇÒ»¸ö¡°1 ÀàºÍ¿Æ±ÈÊýÁС±£»
£¨3£©¸ù¾ÝÌâÖС°kÀàºÍ¿Æ±ÈÊýÁС±µÄ¶¨Ò壬½«
=t±ã¿ÉÇó³öDÓëb1µÄ¹Øϵ£¬¼Ì¶ø¿ÉÒÔÇó³ö³£ÊýtµÄ±í´ïʽ£®
£¨2£©¸ù¾Ý£¨1£©ÖÐÇó³öµÄanµÄͨÏʽ±ã¿ÉÇó³öcnµÄͨÏʽΪcn=2n-1£¬È»ºóÇó³ö
S2n |
Sn |
£¨3£©¸ù¾ÝÌâÖС°kÀàºÍ¿Æ±ÈÊýÁС±µÄ¶¨Ò壬½«
S(k+1)n |
Skn |
½â´ð£º½â£º£¨1£©ÁªÁ¢£º
£¬
¡à
an-
an-1=an£¬
¡à
=4(n¡Ý2)£¬
ËùÒÔ{an}ÊǵȱÈÊýÁУ¬
ÓÉ a1=
a1-
£¬µÃ a1=2£¬
¹Ê an=2•4n-1 =22n-1 £®
£¨2£©cn=2n-1Ç°nÏîµÄºÍSn=n2£¨1·Ö£©
S2n=4n2 £¬
=4£¬
ËùÒÔÊýÁÐ{an}ÊÇÒ»¸ö¡°1ÀàºÍ¿Æ±ÈÊýÁС±£®
£¨3£©¶ÔÈÎÒâÒ»¸öµÈ²îÊýÁÐÊýÁÐbn£¬Ê×Ïîb1£¬¹«²îD£¬
Skn=knb1+
D£®
S(k+1)n=(k+1)nb1+
D£¬
=
=t£¬¶ÔÒ»ÇÐn¡ÊN*ºã³ÉÁ¢£¬
2£¨k+1£©b1+£¨k+1£©£¨£¨k+1£©n-1£©=2ktb1+k£¨kn-1£©Dt¶ÔÒ»ÇÐn¡ÊN*ºã³ÉÁ¢£¬
£¨k+1-kt£©£¨2b1-D£©=n•D£¨k2t-£¨k+1£©2£©¶ÔÒ»ÇÐn¡ÊN*ºã³ÉÁ¢£¬
ËùÒÔ
£¬
D=2b1 £¬
ËùÒÔt=(
)2£®
|
¡à
4 |
3 |
4 |
3 |
¡à
an |
an-1 |
ËùÒÔ{an}ÊǵȱÈÊýÁУ¬
ÓÉ a1=
4 |
3 |
2 |
3 |
¹Ê an=2•4n-1 =22n-1 £®
£¨2£©cn=2n-1Ç°nÏîµÄºÍSn=n2£¨1·Ö£©
S2n=4n2 £¬
S2n |
Sn |
ËùÒÔÊýÁÐ{an}ÊÇÒ»¸ö¡°1ÀàºÍ¿Æ±ÈÊýÁС±£®
£¨3£©¶ÔÈÎÒâÒ»¸öµÈ²îÊýÁÐÊýÁÐbn£¬Ê×Ïîb1£¬¹«²îD£¬
Skn=knb1+
kn(kn-1) |
2 |
S(k+1)n=(k+1)nb1+
(k+1)n((k+1)n-1) |
2 |
S(k+1)n |
Skn |
(k+1)b1+
| ||
kb1+
|
2£¨k+1£©b1+£¨k+1£©£¨£¨k+1£©n-1£©=2ktb1+k£¨kn-1£©Dt¶ÔÒ»ÇÐn¡ÊN*ºã³ÉÁ¢£¬
£¨k+1-kt£©£¨2b1-D£©=n•D£¨k2t-£¨k+1£©2£©¶ÔÒ»ÇÐn¡ÊN*ºã³ÉÁ¢£¬
ËùÒÔ
|
D=2b1 £¬
ËùÒÔt=(
k+1 |
k |
µãÆÀ£º±¾Ì⿼²éÁ˵ȲîÊýÁеĻù±¾ÐÔÖÊÒÔ¼°ÊýÁеĵÝÍƹ«Ê½£¬¿¼²éÁËѧÉúµÄ¼ÆËãÄÜÁ¦ºÍ¶ÔÊýÁеÄ×ÛºÏÕÆÎÕ£¬½âÌâʱעÒâÕûÌå˼ÏëºÍת»¯Ë¼ÏëµÄÔËÓã¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿