题目内容
城市公交车的数量若太多则容易造成资源的浪费;若太少又难以满足乘客需求.某市公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间作为样本分成5组,如下表所示(单位:分钟):
组别 | 候车时间 | 人数 |
一 | | 2 |
二 | 6 | |
三 | 4 | |
四 | 2 | |
五 | 1 |
(2)若从上表第三、四组的6人中任选2人作进一步的调查,求抽到的两人恰好来自不同组的概率.
(1)32;(2).
解析试题分析:(1)用候车时间少于10分钟的总人数除以15,得到的频率再乘以60;(2)先计算从三、四两组中任选2人的基本事件个数,为此,将第三组乘客编号为,第四组乘客编号为,选中的事件有共5个,未选中而选中的事件有共4个,都未选中而选中的事件有共3个, 都未选中而选中的事件有共2个,选中的两人都来自四组的事件为共1个,所以共15个基本事件,其中2人恰好来自不同组的事件有共8个,后者除以前者即得.
试题解析:(1)候车时间少于10分钟的概率为, 4分
所以候车时间少于10分钟的人数为人; 6分
(2)将第三组乘客编号为,第四组乘客编号为.从6人中任选两人有包含以下基本事件:,,,,共15个基本事件, 10分
其中两人恰好来自不同组包含8个基本事件,所以所求概率为. 12分
考点: 1、随机抽样;2、用样本估计总体;3、古典概型.
练习册系列答案
相关题目
为了对新产品进行合理定价,对该产品进行了试销试验,以观察需求量Y(单位:千件)对于价格x(单位:千元)的反应,得数据如下:
x/千元 | 50 | 70 | 80 | 40 | 30 | 90 | 95 | 97 |
y/千件 | 100 | 80 | 60 | 120 | 135 | 55 | 50 | 48 |
(2)若成本x=y+500,试求:
①在盈亏平衡条件下(利润为零)的价格;
②在利润为最大的条件下,定价为多少?
下表是对某市8所中学学生是否吸烟进行调查所得的结果:
| 吸烟学生 | 不吸烟学生 |
父母中至少有一人吸烟 | 816 | 3 203 |
父母均不吸烟 | 188 | 1 168 |
(2)在父母均不吸烟的学生中,估计吸烟学生所占的百分比是多少?
(3)学生的吸烟习惯和父母是否吸烟有关吗?请简要说明理由.
(4)有多大的把握认为学生的吸烟习惯和父母是否吸烟有关?
从一批苹果中,随机抽取50个,其重量(单位:g)的频数分布表如下:
分组(重量) | [80,85) | [85,90) | [90,95) | [95,100) |
频数(个) | 5 | 10 | 20 | 15 |
(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?
(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有一个的概率.