题目内容

【题目】如果的三个内角的正弦值分别等于的三个内角的余弦值,则下列正确的是( )

A. 都是锐角三角形

B. 都是钝角三角形

C. 是锐角三角形且是钝角三角形

D. 是钝角三角形且是锐角三角形

【答案】D

【解析】

先根据三角形三个内角的余弦值为正数,得出三角形是锐角三角形.先假设三角形分别为锐角三角形或直角三角形,推导出矛盾,由此判断出三角形是钝角三角形.

因为三角形的三个内角的正弦值都大于零,所以三角形的三个内角的余弦值都大于零,所以三角形是锐角三角形.若三角形是锐角三角形,不妨设,,,即,三个式子相加,得,这与三角形内角和定理矛盾,故三角形不是锐角三角形.若三角形是直角三角形,该直角的正弦值为,对应锐角三角形内角的余弦值为,这个显然不成立,所以三角形不是直角三角形.综上所述,是钝角三角形且是锐角三角形,故选D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网