题目内容

【题目】如图,一辆汽车从A市出发沿海岸一条笔直公路以的速度向东匀速行驶,汽车开动时,在A市南偏东方向距A500km且与海岸距离为300km的海上B处有一艘快艇与汽车同时出发,要把一份文件交给这辆汽车的司机.

1)快艇至少以多大的速度行驶才能把文件送到司机手中?

2)求快艇以最小速度行驶时的行驶方向与所成角的大小.

3)若快艇每小时最快行驶,快艇应如何行驶才能尽快把文件交到司机手中?最快需多长时间?

【答案】1)快艇至少以的速度行驶才能把文件送到司机手中;(2)快艇以最小速度行驶时的行驶方向与所成的角为90°;(3)快艇应垂直于海岸向北行驶才能尽快把文件交到司机手中,最快需要4h

【解析】

(1)画图分析,后与汽车在C处相遇,再根据三角形中的关系分别表示快艇与汽车所经过的路程,再化简求得快艇速度与时间之间的函数关系,再利用二次不等式的最值分析即可.

(2)根据(1)中的结论分析可得汽车与快艇路程构成的三角形中的边的关系,进而求得时间即可.

(3)设快艇以的速度沿行驶,后与汽车在E处相遇,同(1)中的方法求得三角形各边的关系分析即可.

1)如图所示,设快艇以的速度从B处出发,沿方向行驶,后与汽车在C处相遇.

中,,,,边上的高,.

,则,.

由余弦定理,得,

,

整理得

.

,即时,,∴.

即快艇至少以的速度行驶才能把文件送到司机手中.

2)由(1)可知,当时,在中,

,,,由余弦定理,得,∴.

故快艇以最小速度行驶时的行驶方向与所成的角为90°.

3)如图所示,设快艇以的速度沿行驶,后与汽车在E处相遇.

中,,,,.

由余弦定理,得,

解得(舍去),

∵当时,,,,∴快艇应垂直于海岸向北行驶才能尽快把文件交到司机手中,最快需要4h.

练习册系列答案
相关题目

【题目】在等差数列中,已知公差 ,且 成等比数列.

(1)求数列的通项公式

(2)求.

【答案】(1);(2)100

【解析】试题分析:(1)根据题意 成等比数列得求出d即可得通项公式;(2)求项的绝对前n项和,首先分清数列有多少项正数项和负数项,然后正数项绝对值数值不变,负数项绝对值要变号,从而得,得,由,得,∴ 计算 即可得出结论

解析:(1)由题意可得,则

,即

化简得,解得(舍去).

.

(2)由(1)得时,

,得,由,得

.

.

点睛:对于数列第一问首先要熟悉等差和等比通项公式及其性质即可轻松解决,对于第二问前n项的绝对值的和问题,首先要找到数列由多少正数项和负数项,进而找到绝对值所影响的项,然后在求解即可得结论

型】解答
束】
18

【题目】甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下: 甲公司规定底薪80元,每销售一件产品提成1元; 乙公司规定底薪120元,日销售量不超过45件没有提成,超过45件的部分每件提成8元.

(I)请将两家公司各一名推销员的日工资 (单位: 元) 分别表示为日销售件数的函数关系式;

(II)从两家公司各随机选取一名推销员,对他们过去100天的销售情况进行统计,得到如下条形图。若记甲公司该推销员的日工资为,乙公司该推销员的日工资为 (单位: 元),将该频率视为概率,请回答下面问题:

某大学毕业生拟到两家公司中的一家应聘推销员工作,如果仅从日均收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网