题目内容

【题目】已知f(x)=ax5+bx3+cx+8,且f(﹣2)=10,则f(2)=(
A.﹣2
B.﹣6
C.6
D.8

【答案】C
【解析】解:∵f(x)=ax5+bx3+cx+8
∴f(﹣2)=﹣32a﹣8b﹣2c+8=10,
∴32a+8b+2c=﹣2
则f(2)=32a+8b+2c+8=﹣2+8=6
故选C
【考点精析】解答此题的关键在于理解函数奇偶性的性质的相关知识,掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网