题目内容

【题目】已知a,b,c是互不相等的实数,求证:由y=ax2+2bx+c,y=bx2+2cx+a,y=cx2+2ax+b确定的三条抛物线至少有一条与x轴有两个不同的交点.

【答案】【解答】
证明:假设题设中的函数确定的三条抛物线都不与x有两个不同的交点
(即任何一条抛物线与x轴没有两个不同的交点),
由y=ax2+2bx+c,y=bx2+2cx+a,y=cx2+2ax+b得△1=(2b)2﹣4ac≤0,
2=(2c)2﹣4ab≤0,
3=(2a)2﹣4bc≤0.
同向不等式求和得,
4b2+4c2+4a2﹣4ac﹣4ab﹣4bc≤0,
∴2a2+2b2+2c2﹣2ab﹣2bc﹣2ac≤0,
∴(a﹣b)2+(b﹣c)2+(c﹣a)2≤0,
∴a=b=c,这与题设a,b,c互不相等矛盾,
因此假设不成立,从而命题得证.
【解析】本题主要考查了反证法的应用,解决问题的关键是本题是一个至少性问题,可以利用反证法证明,其步骤为:①否定命题的结论,即假设“任何一条抛物线与x轴没有两个不同的交点”成立→②根据函数的性质可以得到三个函数对应方程的△≤0均成立→③利用不等式的性质,同向不等式求和→④得到的式子与实数的性质相矛盾→⑤故假设不成立,原结论成立.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网