题目内容

7.已知f(x)=$\left\{\begin{array}{l}{-{x}^{2}+x,x≤1}\\{-lo{g}_{3}x,x>1}\end{array}\right.$,g(x)=|x-k|+|x-1|,若对任意的x1,x2∈R,都有f(x1)≤g(x2)成立,则实数k的取值范围为(  )
A.(-$∞,\frac{3}{4}$)∪($\frac{5}{4},+∞$)B.(-$∞,\frac{3}{4}$]∪[$\frac{5}{4},+∞$)C.[$\frac{3}{4},\frac{5}{4}$]D.($\frac{3}{4},\frac{5}{4}$)

分析 求出函数的最值,不等式有f(x1)≤g(x2)等价为有f(x)max≤g(x)min即可.

解答 解:当x≤1时,f(x)=-x2+x=-(x-$\frac{1}{2}$)2+$\frac{1}{4}$≤$\frac{1}{4}$,
当x>1时,f(x)=-log3x<0,
则函数f(x)max=$\frac{1}{4}$,
g(x)=|x-k|+|x-1|≥|k-x+x-1|=|k-1|,
若对任意的x1,x2∈R,都有f(x1)≤g(x2)成立,
则|k-1|≥$\frac{1}{4}$,
即k-1≥$\frac{1}{4}$或k-1≤-$\frac{1}{4}$,
即k≥$\frac{5}{4}$或k≤$\frac{3}{4}$,
故选:B

点评 本题主要考查不等式恒成立问题,求出函数的最值是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网