题目内容
【题目】秸秆还田是当今世界上普通重视的一项培肥地力的增产措施,在杜绝了秸秆焚烧所造成的大气污染的同时还有增肥增产作用.某农机户为了达到在收割的同时让秸秆还田,花元购买了一台新型联合收割机,每年用于收割可以收入万元(已减去所用柴油费);该收割机每年都要定期进行维修保养,第一年由厂方免费维修保养,第二年及以后由该农机户付费维修保养,所付费用(元)与使用年数的关系为:,已知第二年付费元,第五年付费元.
(1)试求出该农机户用于维修保养的费用(元)与使用年数的函数关系;
(2)这台收割机使用多少年,可使平均收益最大?(收益=收入-维修保养费用-购买机械费用)
【答案】(1) .
(2) 这台收割机使用年,可使年均收益最大.
【解析】试题分析:根据第二年付费元,第五年付费元可得关于的方程组,解出即可得到函数关系记使用年,年均收益为(元),利用基本不等式求最值即可
解析:(Ⅰ)依题意,当,;,,
即,解得,
所以.
(Ⅱ)记使用年,年均收益为(元),
则依题意,,
,
当且仅当,即时取等号.
所以这台收割机使用14年,可使年均收益最大.
【题目】某互联网公司为了确定下一季度的前期广告投入计划,收集了近个月广告投入量(单位:万元)和收益(单位:万元)的数据如下表:
月份 | ||||||
广告投入量 | ||||||
收益 |
他们分别用两种模型①,②分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值:
(Ⅰ)根据残差图,比较模型①,②的拟合效果,应选择哪个模型?并说明理由;
(Ⅱ)残差绝对值大于的数据被认为是异常数据,需要剔除:
(ⅰ)剔除异常数据后求出(Ⅰ)中所选模型的回归方程
(ⅱ)若广告投入量时,该模型收益的预报值是多少?
附:对于一组数据,,……,,其回归直线的斜率和截距的最小二乘估计分别为:
,.
【题目】为了解本届高二学生对文理科的选择与性别是否有关,现随机从高二的全体学生中抽取了若干名学生,据统计,男生35人,理科生40人,理科男生30人,文科女生15人。
(1)完成如下2×2列联表,判断是否有99.9%的把握认为本届高二学生“对文理科的选择与性别有关”?
男生 | 女生 | 合计 | |
文科 | |||
理科 | |||
合计 |
(2)已采用分层抽样的方式从样本的所有女生中抽取了5人,现从这5人中随机抽取2人参加座谈会,求抽到的2人恰好一文一理的概率。
0.15 | 0.10 | 0.05 | 0.01 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(参考公式,其中为样本容量)