题目内容
【题目】某企业经过短短几年的发展,员工近百人.不知何因,人员虽然多了,但员工的实际工作效率还不如从前.年月初,企业领导按员工年龄从企业抽选位员工交流,并将被抽取的员工按年龄(单位:岁)分为四组:第一组,第二组,第三组,第四组,且得到如下频率分布直方图:
(1)求实数的值;
(2)若用简单随机抽样方法从第二组、第三组中再随机抽取人作进一步交流,求“被抽取得人均来自第二组”的概率.
【答案】(1);(2).
【解析】
(1)利用频率分布直方图所有矩形的面积和为可求出实数的值;
(2)可知第二组的人数为人,第三组的人数为人,利用组合计数原理计算出抽取人的方法种数,以及抽取的人均来自第二组的方法种数,利用古典概型的概率公式可计算出所求事件的概率.
(1)据题意得,解得;
(2)据(1)求解知,
第二组中人数(人)又第三组人数(人),
用简单随机抽样方法从第二组、第三组中抽取人的方法数(种)
其中人均来自第二组的方法数(种),因此,所求的概率.
【题目】为了调查某社区居民每天参加健身的时间,某机构在该社区随机采访男性、女性各50名,其中每人每天的健身时间不少于1小时称为“健身族”,否则称其为"非健身族”,调查结果如下:
健身族 | 非健身族 | 合计 | |
男性 | 40 | 10 | 50 |
女性 | 30 | 20 | 50 |
合计 | 70 | 30 | 100 |
(1)若居民每人每天的平均健身时间不低于70分钟,则称该社区为“健身社区”. 已知被随机采访的男性健身族,男性非健身族,女性健身族,女性非健身族每人每天的平均健分时间分別是1.2小时,0.8小时,1.5小时,0.7小时,试估计该社区可否称为“健身社区”?
(2)根据以上数据,能否在犯错误的概率不超过5%的情况下认为“健身族”与“性别”有关?
参考公式: ,其中.
参考数据:
0. 50 | 0. 40 | 0. 25 | 0. 05 | 0. 025 | 0. 010 | |
0. 455 | 0. 708 | 1. 321 | 3. 840 | 5. 024 | 6. 635 |
【题目】利用独立性检验的方法调查高中生性别与爱好某项运动是否有关,通过随机调查200名高中生是否爱好某项运动,利用列联表,由计算可得,参照下表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
得到的正确结论是( )
A.有以上的把握认为“爱好该项运动与性别无关”
B.有以上的把握认为“爱好该项运动与性别有关”
C.在犯错误的概率不超过的前提下,认为“爱好该项运动与性别有关”
D.在犯错误的概率不超过的前提下,认为“爱好该项运动与性别无关”