题目内容
【题目】在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下: 表1:男生表2:女生
等级 | 优秀 | 合格 | 尚待改进 | 等级 | 优秀 | 合格 | 尚待改进 | |
频数 | 15 | x | 5 | 频数 | 15 | 3 | y |
(1)从表二的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率;
(2)由表中统计数据填写下边2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.
男生 | 女生 | 总计 | |
优秀 | |||
非优秀 | |||
总计 |
参考数据与公式:
K2= ,其中n=a+b+c+d.
临界值表:
P(K2>k0) | 0.05 | 0.05 | 0.01 |
k0 | 2.706 | 3.841 | 6.635 |
【答案】
(1)解:设从高一年级男生中抽出m人,则 = ,m=25,
∴x=25﹣20=5,y=20﹣18=2,
表2中非优秀学生共5人,记测评等级为合格的3人为a,b,c,尚待改进的2人为A,B,
则从这5人中任选2人的所有可能结果为:(a,b)(a,c)(b,c)(A,B)(a,A),(a,B),(b,A)(,b,B),(c,A)(c,B),共10种.
设事件C表示“从表二的非优秀学生5人中随机选取2人,恰有1人测评等级为合格”,
则C的结果为:(a,A),(a,B),(b,A)(,b,B),(c,A)(c,B),共6种.
∴P(C)= = ,故所求概率为 .
男生 | 女生 | 总计 | |
优秀 | 15 | 15 | 30 |
非优秀 | 10 | 5 | 15 |
总计 | 25 | 20 | 45 |
(2)解:∵1﹣0.9=0.1,p(k2>2.706)=0.10,
而K2= = = =1.125<2.706,
所以没有90%的把握认为“测评结果优秀与性别有关”.
思路点拨(1)由题意可得非优秀学生共5人,记测评等级为合格的3人为a,b,c,尚待改进的2人为A,B,则从这5人中任选2人的所有可能结果为10个,设事件C表示“从表二的非优秀学生5人中随机选取2人,恰有1人测评等级为合格”,则C的结果为6个,根据概率公式即可求解.(2)由2×2列联表直接求解即可
【解析】(1)由题意可得非优秀学生共5人,记测评等级为合格的3人为a,b,c,尚待改进的2人为A,B,则从这5人中任选2人的所有可能结果为10个,设事件C表示“从表二的非优秀学生5人中随机选取2人,恰有1人测评等级为合格”,则C的结果为6个,根据概率公式即可求解.(2)由2×2列联表直接求解即可.