题目内容
【题目】若对于函数f(x)=ln(x+1)+x2图象上任意一点处的切线l1,在函数g(x)asincosx图象上总存在一条切线l2,使得l1⊥l2,则实数a的取值范围为( )
A. B.
C. D.
【答案】A
【解析】
求得f(x)的导数,可得切线l1的斜率k1,求得g(x)的导数,可得切线l2的斜率k2,运用两直线垂直的条件:斜率之积为﹣1,结合正弦函数的值域和条件可得,x1,x2使得等式成立,即(,0)[﹣1|a|,﹣1|a|],解得a的范围即可.
解:函数f(x)=1n(x+1)+x2,
∴f′(x)2x,( 其中x>﹣1),
函数g(x)asincosxasinx﹣x,
∴g′(x)acosx﹣1;
要使过曲线f(x)上任意一点的切线为l1,
总存在过曲线g(x)=上一点处的切线l2,使得l1⊥l2,
则[2x1)(acosx2﹣1)=﹣1,
acosx2﹣1,
∵2x12(x1+1)﹣2≥22
∵x1,x2使得等式成立,
∴(,0)[﹣1|a|,﹣1|a|],
解得|a|,
即a的取值范围为a或a.
故选:A.
【题目】电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了名观众进行调查,其中女性有名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:
将日均收看该体育节目时间不低于分钟的观众称“体育述”,已知“体育迷”中名女性.
(1)根据已知条件完成下面的列联表,并据此资料你是否认为“体育迷”与性別有关?
非体育迷 | 体育迷 | 合计 | |
男 | |||
女 | |||
合计 |
(2)将日均收看该体育项目不低于分钟的观众称为“超级体育迷”,已知“超级体育述”中有名女性,若从“超级体育述”中任意选取人,求至少有名女性观众的概率.
附: ,
【题目】某家庭记录了未使用节水龙头天的日用水量数据(单位:)和使用了节水龙头天的日用水量数据,得到频数分布表如下:
未使用节水龙头天的日用水量频数分布表
日用水量 | |||||||
频数 |
使用了节水龙头天的日用水量频数分布表
日用水量 | ||||||
频数 |
(Ⅰ)作出使用了节水龙头天的日用水量数据的频率分布直方图;
(Ⅱ)估计该家庭使用节水龙头后,一年能节省多少水?(一年按天计算,同一组中的数据以这组数据所在区间中点的值作代表)
【题目】某家庭记录了未使用节水龙头天的日用水量数据(单位:)和使用了节水龙头天的日用水量数据,得到频数分布表如下:
未使用节水龙头天的日用水量频数分布表
日用水量 | |||||||
频数 |
使用了节水龙头天的日用水量频数分布表
日用水量 | ||||||
频数 |
(Ⅰ)作出使用了节水龙头天的日用水量数据的频率分布直方图;
(Ⅱ)估计该家庭使用节水龙头后,一年能节省多少水?(一年按天计算,同一组中的数据以这组数据所在区间中点的值作代表)