题目内容
【题目】某高校在年的自主招生考试成绩中随机抽取名学生的笔试成绩,按成绩分组:第组,第组,第组,第组,第组得到的频率分布直方图如图所示
分别求第组的频率;
若该校决定在第组中用分层抽样的方法抽取名学生进入第二轮面试,
已知学生甲和学生乙的成绩均在第组,求学生甲和学生乙同时进入第二轮面试的概率;
根据直方图试估计这名学生成绩的平均分.(同一组中的数据用改组区间的中间值代表)
【答案】(1);(2)①;②.
【解析】
(1)根据频率分布直方图的性质,根据所给的频率分布直方图中小矩形的长和宽,求出矩形的面积,即这组数据的频率.
(2)①先求得试验发生包含的事件数是,再求得满足条件的事件数是,根据等可能事件的概率公式,得到结果.
②由频率分布直方图的平均数公式直接计算即可.
(1)第3组的频率为 ;第4组的频率为 ;
第5组的频率为 .
(2)按分层抽样的方法在第3、4、5组中分别抽取3人、2人、1人.
①第3组共有,设“学生甲和学生乙同时进入第二轮面试”为事件
,学生甲和学生乙同时进入第二轮面试的概率为.
②.
【题目】即将于年夏季毕业的某大学生准备到贵州非私营单位求职,为了了解工资待遇情况,他在贵州省统计局的官网上,查询到年到年非私营单位在岗职工的年平均工资近似值(单位:万元),如下表:
年份 | ||||||||||
序号 | ||||||||||
年平均工资 |
(1)请根据上表的数据,利用线性回归模型拟合思想,求关于的线性回归方程(,的计算结果根据四舍五入精确到小数点后第二位);
(2)如果毕业生对年平均工资的期望值为8.5万元,请利用(1)的结论,预测年的非私营单位在岗职工的年平均工资(单位:万元。计算结果根据四舍五入精确到小数点后第二位),并判断年平均工资能否达到他的期望.
参考数据:,,
附:对于一组具有线性相关的数据:,,,,
其回归直线的斜率和截距的最小二乘法估计分别为
,