题目内容
(2006•奉贤区一模)在无穷等比数列{an}中,a1=1,q=
,记Tn=
+
+
+…+
,则
Tn等于
.
1 |
2 |
a | 2 2 |
a | 2 4 |
a | 2 6 |
a | 2 2n |
lim |
n→∞ |
4 |
15 |
4 |
15 |
分析:由题设知an=(
)n-1=21-n,a2n=21-2n,a2n2=(21-2n)2=22-4n,所以Tn=2-2+2-6+2-10+…+22-4n
=
.由此能求出
Tn.
1 |
2 |
=
2-2(1-2-4n) |
1-2-4 |
lim |
n→∞ |
解答:解:∵无穷等比数列{an}中,a1=1,q=
,
∴an=(
)n-1=21-n,
a2n=21-2n,
a2n2=(21-2n)2=22-4n,
∴Tn=2-2+2-6+2-10+…+22-4n
=
.
∴
Tn=
=
=
.
故答案为:
.
1 |
2 |
∴an=(
1 |
2 |
a2n=21-2n,
a2n2=(21-2n)2=22-4n,
∴Tn=2-2+2-6+2-10+…+22-4n
=
2-2(1-2-4n) |
1-2-4 |
∴
lim |
n→∞ |
lim |
n→∞ |
2-2(1-2-4n) |
1-2-4 |
=
| ||
1-
|
=
4 |
15 |
故答案为:
4 |
15 |
点评:本题考查数列的极限,解题时要认真审题,注意等比数列通项公式的灵活运用.
练习册系列答案
相关题目