题目内容

【题目】已知定义域为R的函数f(x)=是奇函数.
(1)求a,b的值;
(2)判断函数f(x)的单调性,并用定义证明;
(3)若对于任意都有f(kx2)+f(2x﹣1)>0成立,求实数k的取值范围.

【答案】解:(1)因为f(x)是奇函数,所以f(0)=0=0,解得b=1,
f(x)=,又由f(1)=﹣f(﹣1)=,解得a=2.
(2)证明:由(1)可得:f(x)==
x1<x2 , ∴>0,
则f(x1)﹣f(x2)==>0,
∴f(x1)>f(x2).
∴f(x)在R上是减函数.
(3)∵函数f(x)是奇函数.
∴f(kx2)+f(2x﹣1)>0成立,等价于f(kx2)>﹣f(2x﹣1)=f(1﹣2x)成立,
∵f(x)在R上是减函数,∴kx2<1﹣2x,
∴对于任意都有kx2<1﹣2x成立,
∴对于任意都有k<
设g(x)=
∴g(x)==
令t=,t∈[,2],
则有,,∴g(x)min=g(t)min=g(1)=﹣1
∴k<﹣1,即k的取值范围为(﹣∞,﹣1)
【解析】(1)直接根据函数是奇函数,满足f(﹣x)=﹣f(x),把x=0,和x=1代入,即可得到关于a,b的两个等式,解方程组求出a,b的值.
(2)利用减函数的定义即可证明.
(3))f(kx2)+f(2x﹣1)>0成立,等价于f(kx2)>﹣f(2x﹣1)=f(1﹣2x),即k<成立,设g(x)=
换元使之成为二次函数,再求最小值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网