题目内容
【题目】已知是抛物线上一点,经过点的直线与抛物线交于、两点(不同于点),直线、分别交直线于点、.
(1)求抛物线方程及其焦点坐标;
(2)求证:以为直径的圆恰好经过原点.
【答案】(1)抛物线方程为,焦点坐标为;(2)证明见解析.
【解析】
(1)将点的坐标代入抛物线的方程,求出的值,可得出抛物线的方程,并求出抛物线的焦点坐标;
(2)设,,、,设直线的方程为,其中,将直线的方程与抛物线的方程联立,列出韦达定理,利用向量共线求出点、的坐标,然后将韦达定理代入,利用向量数量积的坐标运算计算出,即可证明出结论成立.
(1)将代入,得,因此,抛物线方程为,焦点坐标为;
(2)设,,、.
因为直线不经过点,所以直线一定有斜率,设直线方程为,
与抛物线方程联立得到,消去,得,
则由韦达定理得,.
,,
,,即,
显然,,,,
则点,同理可求得点的坐标为,
所以,,
,因此,以为直径的圆过原点.
练习册系列答案
相关题目