题目内容
【题目】如图,点为圆:上一动点,过点分别作轴,轴的垂线,垂足分别为,,连接延长至点,使得,点的轨迹记为曲线.
(1)求曲线的方程;
(2)若点,分别位于轴与轴的正半轴上,直线与曲线相交于,两点,试问在曲线上是否存在点,使得四边形为平行四边形,若存在,求出直线方程;若不存在,说明理由.
【答案】(1)(2)这样的直线不存在.详见解析
【解析】
(1)设,,则,,且,通过,转化求解即可.
(2)设M(x1,y1),N(x2,y2),由题意知直线的斜率存在且不为零,设直线的方程为,代入椭圆方程整理得关于x的一元二次方程,假设存在点Q,满足题意,则其充要条件为,则点Q的坐标为(x1+x2,y1+y2).由此利用韦达定理结合点Q在曲线上,得到关于k的方程求解即可.
(1)设,,
则,,
由题意知,所以为中点,
由中点坐标公式得
,
即,
又点在圆:上,故满足
,
得.
(2)由题意知直线的斜率存在且不为零,
设直线的方程为,
因为,故,即 ①,
联立,
消去得:,
设,,
,,
,
因为为平行四边形,故,
点在椭圆上,故,整理得,②,
将①代入②,得,该方程无解,
故这样的直线不存在.
练习册系列答案
相关题目