ÌâÄ¿ÄÚÈÝ

Èçͼ£¬ÉèÅ×ÎïÏßC1£ºy2=4mx£¨m£¾0£©µÄ×¼ÏßÓëxÖá½»ÓÚF1£¬½¹µãΪF2£»ÒÔF1¡¢F2Ϊ½¹µã£¬ÀëÐÄÂÊe=
1
2
µÄÍÖÔ²C2ÓëÅ×ÎïÏßC1ÔÚxÖáÉÏ·½µÄÒ»¸ö½»µãΪP£®
£¨¢ñ£©µ±m=1ʱ£¬ÇóÍÖÔ²µÄ·½³Ì¼°ÆäÓÒ×¼Ïߵķ½³Ì£»
£¨¢ò£©ÔÚ£¨¢ñ£©µÄÌõ¼þÏ£¬¾­¹ýµãF2µÄÖ±ÏßlÓëÅ×ÎïÏßC1½»ÓÚA1¡¢A2£¬Èç¹ûÒÔÏ߶ÎA1A2Ϊֱ¾¶×÷Ô²£¬ÊÔÅжÏÅ×ÎïÏßC1µÄ×¼ÏßÓëÍÖÔ²C2µÄ½»µãB1¡¢B2ÓëÔ²µÄλÖùØϵ£»
£¨¢ó£©ÊÇ·ñ´æÔÚʵÊým£¬Ê¹µÃ¡÷PF1F2µÄ±ß³¤ÊÇÁ¬ÐøµÄ×ÔÈ»Êý£¬Èô´æÔÚ£¬Çó³öÕâÑùµÄʵÊým£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺¼ÆËãÌâ,Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨¢ñ£©µ±m=1ʱ£¬Ò×Öªc=1£¬a=2£¬b=
3
£»´Ó¶øÇóÍÖÔ²·½³Ì¼°×¼Ïß·½³Ì£»
£¨¢ò£©ÒÀÌâÒâÉèÖ±ÏßlµÄ·½³ÌΪ£ºx=ky+1£¬k¡ÊR£¬Óëy2=4xÁªÁ¢¿ÉµÃy2-4ky-4=0£»²»·ÁÈ¡B1 (-1£¬
3
2
)
£¬¿ÉÇóµÃ
B1A1
B1A2
¡Ý0£¬¹ÊµãB1ÔÚÔ²ÉÏ»òÔ²Í⣬¹ÊµãB1¡¢B2ÔÚÔ²ÉÏ»òÔ²Í⣻
£¨¢ó£©¼ÙÉè´æÔÚÂú×ãÌõ¼þµÄʵÊým£¬Í¨¹ýµÚ¶þ¶¨Òå¿ÉÖªÈý½ÇÐÎPF1F2µÄ±ß³¤·Ö±ðÊÇ
5
3
m £¬ 
6
3
m £¬ 
7
3
m
£¬´Ó¶øÇó³öm¼´¿É£®
½â´ð£º ½â£º£¨¢ñ£©µ±m=1ʱ£¬F1£¨-1£¬0£©£¬F2£¨1£¬0£©£¬
¹Êc=1£¬ÓÖÓÉÀëÐÄÂÊe=
1
2
Öª£¬
a=2£¬¹Êb=
3
£»
ÔòÍÖÔ²·½³ÌΪ
x2
4
+
y2
3
=1
£¬
ÓÒ×¼Ïß·½³ÌΪx=
a2
c
=4£»
£¨¢ò£©ÒÀÌâÒâÉèÖ±ÏßlµÄ·½³ÌΪ£ºx=ky+1£¬k¡ÊR£¬
½«x=ky+1´úÈëy2=4xµÃ£¬
y2-4ky-4=0£®
ÉèA1£¨x1£¬y1£©£¬A2£¨x2£¬y2£©£¬
ÓÉΤ´ï¶¨ÀíµÃy1+y2=4k£¬y1y2=-4£®
ÓÉÍÖÔ²ºÍÅ×ÎïÏߵĶԳÆÐÔ£¬Ö»ÒªÅжÏB1¡¢B2ÖÐÒ»µã¼´¿É£®
²»·ÁÈ¡B1 (-1£¬
3
2
)
£¬
¡ß
B1A1
=(x1+1£¬y1-
3
2
)£¬
B1A2
=(x2+1£¬y2-
3
2
)
£¬
¡à
B1A1
B1A2
=£¨x1+1£©£¨x2+1£©+£¨y1-
3
2
£©£¨y2-
3
2
£©
=x1x2+£¨x1+x2£©+1+y1y2-
3
2
£¨y1+y2£©+
9
4

=4k2-6k+
9
4
=4£¨k-
3
4
£©2£»
ÒòΪk¡ÊR£¬ÓÚÊÇ
B1A1
B1A2
¡Ý0
£¬
¼´µãB1ÔÚÔ²ÉÏ»òÔ²Í⣬¹ÊµãB1¡¢B2ÔÚÔ²ÉÏ»òÔ²Í⣮
£¨¢ó£©¼ÙÉè´æÔÚÂú×ãÌõ¼þµÄʵÊým£¬
ÓÉÌâÉèÓÐc=m£¬a=2m£¬|F1F2|=2m£®
ÓÖÉè|PF1|=r1£¬|PF2|=r2£¬
ÓÐr1+r2=2a=4m£»
ÉèP£¨x0£¬y0£©£¬
¶ÔÓÚÅ×ÎïÏßC1£¬r2=x0+m£»
¶ÔÓÚÍÖÔ²C2£¬
r2
a2
c
-x0
=e=
1
2
£¬
¼´r2=
1
2
(4m-x0)
£®
ÓÉx0+m=
1
2
(4m-x0)
½âµÃ£¬x0=
2
3
m
£¬
¡àr2=
5
3
m
£¬´Ó¶ø r1=
7
3
m
£®
Òò´Ë£¬Èý½ÇÐÎPF1F2µÄ±ß³¤·Ö±ðÊÇ
5
3
m £¬ 
6
3
m £¬ 
7
3
m
£®
ËùÒÔm=3ʱ£¬ÄÜʹÈý½ÇÐÎPF1F2µÄ±ß³¤ÊÇÁ¬ÐøµÄ×ÔÈ»Êý£®
µãÆÀ£º±¾Ì⿼²éÁËԲ׶ÇúÏßµÄλÖùØϵµÄÓ¦Óã¬Ó¦Óõ½ÁËΤ´ï¶¨Àí¼°ÏòÁ¿£¬»¯¼òºÜÀ§ÄÑ£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø