ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÉèÅ×ÎïÏßC1£ºy2=4mx£¨m£¾0£©µÄ×¼ÏßÓëxÖá½»ÓÚF1£¬½¹µãΪF2£»ÒÔF1¡¢F2Ϊ½¹µã£¬ÀëÐÄÂÊe=
µÄÍÖÔ²C2ÓëÅ×ÎïÏßC1ÔÚxÖáÉÏ·½µÄÒ»¸ö½»µãΪP£®
£¨¢ñ£©µ±m=1ʱ£¬ÇóÍÖÔ²µÄ·½³Ì¼°ÆäÓÒ×¼Ïߵķ½³Ì£»
£¨¢ò£©ÔÚ£¨¢ñ£©µÄÌõ¼þÏ£¬¾¹ýµãF2µÄÖ±ÏßlÓëÅ×ÎïÏßC1½»ÓÚA1¡¢A2£¬Èç¹ûÒÔÏ߶ÎA1A2Ϊֱ¾¶×÷Ô²£¬ÊÔÅжÏÅ×ÎïÏßC1µÄ×¼ÏßÓëÍÖÔ²C2µÄ½»µãB1¡¢B2ÓëÔ²µÄλÖùØϵ£»
£¨¢ó£©ÊÇ·ñ´æÔÚʵÊým£¬Ê¹µÃ¡÷PF1F2µÄ±ß³¤ÊÇÁ¬ÐøµÄ×ÔÈ»Êý£¬Èô´æÔÚ£¬Çó³öÕâÑùµÄʵÊým£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
1 |
2 |
£¨¢ñ£©µ±m=1ʱ£¬ÇóÍÖÔ²µÄ·½³Ì¼°ÆäÓÒ×¼Ïߵķ½³Ì£»
£¨¢ò£©ÔÚ£¨¢ñ£©µÄÌõ¼þÏ£¬¾¹ýµãF2µÄÖ±ÏßlÓëÅ×ÎïÏßC1½»ÓÚA1¡¢A2£¬Èç¹ûÒÔÏ߶ÎA1A2Ϊֱ¾¶×÷Ô²£¬ÊÔÅжÏÅ×ÎïÏßC1µÄ×¼ÏßÓëÍÖÔ²C2µÄ½»µãB1¡¢B2ÓëÔ²µÄλÖùØϵ£»
£¨¢ó£©ÊÇ·ñ´æÔÚʵÊým£¬Ê¹µÃ¡÷PF1F2µÄ±ß³¤ÊÇÁ¬ÐøµÄ×ÔÈ»Êý£¬Èô´æÔÚ£¬Çó³öÕâÑùµÄʵÊým£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺¼ÆËãÌâ,Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨¢ñ£©µ±m=1ʱ£¬Ò×Öªc=1£¬a=2£¬b=
£»´Ó¶øÇóÍÖÔ²·½³Ì¼°×¼Ïß·½³Ì£»
£¨¢ò£©ÒÀÌâÒâÉèÖ±ÏßlµÄ·½³ÌΪ£ºx=ky+1£¬k¡ÊR£¬Óëy2=4xÁªÁ¢¿ÉµÃy2-4ky-4=0£»²»·ÁÈ¡B1 (-1£¬
)£¬¿ÉÇóµÃ
•
¡Ý0£¬¹ÊµãB1ÔÚÔ²ÉÏ»òÔ²Í⣬¹ÊµãB1¡¢B2ÔÚÔ²ÉÏ»òÔ²Í⣻
£¨¢ó£©¼ÙÉè´æÔÚÂú×ãÌõ¼þµÄʵÊým£¬Í¨¹ýµÚ¶þ¶¨Òå¿ÉÖªÈý½ÇÐÎPF1F2µÄ±ß³¤·Ö±ðÊÇ
m £¬
m £¬
m£¬´Ó¶øÇó³öm¼´¿É£®
3 |
£¨¢ò£©ÒÀÌâÒâÉèÖ±ÏßlµÄ·½³ÌΪ£ºx=ky+1£¬k¡ÊR£¬Óëy2=4xÁªÁ¢¿ÉµÃy2-4ky-4=0£»²»·ÁÈ¡B1 (-1£¬
3 |
2 |
B1A1 |
B1A2 |
£¨¢ó£©¼ÙÉè´æÔÚÂú×ãÌõ¼þµÄʵÊým£¬Í¨¹ýµÚ¶þ¶¨Òå¿ÉÖªÈý½ÇÐÎPF1F2µÄ±ß³¤·Ö±ðÊÇ
5 |
3 |
6 |
3 |
7 |
3 |
½â´ð£º
½â£º£¨¢ñ£©µ±m=1ʱ£¬F1£¨-1£¬0£©£¬F2£¨1£¬0£©£¬
¹Êc=1£¬ÓÖÓÉÀëÐÄÂÊe=
Öª£¬
a=2£¬¹Êb=
£»
ÔòÍÖÔ²·½³ÌΪ
+
=1£¬
ÓÒ×¼Ïß·½³ÌΪx=
=4£»
£¨¢ò£©ÒÀÌâÒâÉèÖ±ÏßlµÄ·½³ÌΪ£ºx=ky+1£¬k¡ÊR£¬
½«x=ky+1´úÈëy2=4xµÃ£¬
y2-4ky-4=0£®
ÉèA1£¨x1£¬y1£©£¬A2£¨x2£¬y2£©£¬
ÓÉΤ´ï¶¨ÀíµÃy1+y2=4k£¬y1y2=-4£®
ÓÉÍÖÔ²ºÍÅ×ÎïÏߵĶԳÆÐÔ£¬Ö»ÒªÅжÏB1¡¢B2ÖÐÒ»µã¼´¿É£®
²»·ÁÈ¡B1 (-1£¬
)£¬
¡ß
=(x1+1£¬y1-
)£¬
=(x2+1£¬y2-
)£¬
¡à
•
=£¨x1+1£©£¨x2+1£©+£¨y1-
£©£¨y2-
£©
=x1x2+£¨x1+x2£©+1+y1y2-
£¨y1+y2£©+
=4k2-6k+
=4£¨k-
£©2£»
ÒòΪk¡ÊR£¬ÓÚÊÇ
•
¡Ý0£¬
¼´µãB1ÔÚÔ²ÉÏ»òÔ²Í⣬¹ÊµãB1¡¢B2ÔÚÔ²ÉÏ»òÔ²Í⣮
£¨¢ó£©¼ÙÉè´æÔÚÂú×ãÌõ¼þµÄʵÊým£¬
ÓÉÌâÉèÓÐc=m£¬a=2m£¬|F1F2|=2m£®
ÓÖÉè|PF1|=r1£¬|PF2|=r2£¬
ÓÐr1+r2=2a=4m£»
ÉèP£¨x0£¬y0£©£¬
¶ÔÓÚÅ×ÎïÏßC1£¬r2=x0+m£»
¶ÔÓÚÍÖÔ²C2£¬
=e=
£¬
¼´r2=
(4m-x0)£®
ÓÉx0+m=
(4m-x0)½âµÃ£¬x0=
m£¬
¡àr2=
m£¬´Ó¶ø r1=
m£®
Òò´Ë£¬Èý½ÇÐÎPF1F2µÄ±ß³¤·Ö±ðÊÇ
m £¬
m £¬
m£®
ËùÒÔm=3ʱ£¬ÄÜʹÈý½ÇÐÎPF1F2µÄ±ß³¤ÊÇÁ¬ÐøµÄ×ÔÈ»Êý£®
¹Êc=1£¬ÓÖÓÉÀëÐÄÂÊe=
1 |
2 |
a=2£¬¹Êb=
3 |
ÔòÍÖÔ²·½³ÌΪ
x2 |
4 |
y2 |
3 |
ÓÒ×¼Ïß·½³ÌΪx=
a2 |
c |
£¨¢ò£©ÒÀÌâÒâÉèÖ±ÏßlµÄ·½³ÌΪ£ºx=ky+1£¬k¡ÊR£¬
½«x=ky+1´úÈëy2=4xµÃ£¬
y2-4ky-4=0£®
ÉèA1£¨x1£¬y1£©£¬A2£¨x2£¬y2£©£¬
ÓÉΤ´ï¶¨ÀíµÃy1+y2=4k£¬y1y2=-4£®
ÓÉÍÖÔ²ºÍÅ×ÎïÏߵĶԳÆÐÔ£¬Ö»ÒªÅжÏB1¡¢B2ÖÐÒ»µã¼´¿É£®
²»·ÁÈ¡B1 (-1£¬
3 |
2 |
¡ß
B1A1 |
3 |
2 |
B1A2 |
3 |
2 |
¡à
B1A1 |
B1A2 |
3 |
2 |
3 |
2 |
=x1x2+£¨x1+x2£©+1+y1y2-
3 |
2 |
9 |
4 |
=4k2-6k+
9 |
4 |
3 |
4 |
ÒòΪk¡ÊR£¬ÓÚÊÇ
B1A1 |
B1A2 |
¼´µãB1ÔÚÔ²ÉÏ»òÔ²Í⣬¹ÊµãB1¡¢B2ÔÚÔ²ÉÏ»òÔ²Í⣮
£¨¢ó£©¼ÙÉè´æÔÚÂú×ãÌõ¼þµÄʵÊým£¬
ÓÉÌâÉèÓÐc=m£¬a=2m£¬|F1F2|=2m£®
ÓÖÉè|PF1|=r1£¬|PF2|=r2£¬
ÓÐr1+r2=2a=4m£»
ÉèP£¨x0£¬y0£©£¬
¶ÔÓÚÅ×ÎïÏßC1£¬r2=x0+m£»
¶ÔÓÚÍÖÔ²C2£¬
r2 | ||
|
1 |
2 |
¼´r2=
1 |
2 |
ÓÉx0+m=
1 |
2 |
2 |
3 |
¡àr2=
5 |
3 |
7 |
3 |
Òò´Ë£¬Èý½ÇÐÎPF1F2µÄ±ß³¤·Ö±ðÊÇ
5 |
3 |
6 |
3 |
7 |
3 |
ËùÒÔm=3ʱ£¬ÄÜʹÈý½ÇÐÎPF1F2µÄ±ß³¤ÊÇÁ¬ÐøµÄ×ÔÈ»Êý£®
µãÆÀ£º±¾Ì⿼²éÁËԲ׶ÇúÏßµÄλÖùØϵµÄÓ¦Óã¬Ó¦Óõ½ÁËΤ´ï¶¨Àí¼°ÏòÁ¿£¬»¯¼òºÜÀ§ÄÑ£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÕýËÄÃæÌåÀⳤΪ1£¬ÆäÍâ½ÓÇòµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
A¡¢
| ||
B¡¢¦Ð | ||
C¡¢
| ||
D¡¢3¦Ð |