题目内容
【题目】设0<a≤ ,若满足不等式|x﹣a|<b的一切实数x,亦满足不等式|x﹣a2|< ,求实数b的取值范围.
【答案】解:解:由题意可得b>0是不用求的,否则|x﹣a|<b都没解了.
故有﹣b<x﹣a<b,即a﹣b<x<a+b.
由不等式|x﹣a2|< 得,﹣ <x﹣a2< ,即 a2﹣ <x<a2+ .
第二个不等式的范围要大于第一个不等式,这样只要满足了第一个不等式,
肯定满足第二个不等式,命题成立.
故有 a2﹣ ≤a﹣b,且 a+b≤a2+ ,0<a≤ .
化简可得 b≤﹣a2+a+ ,且b≤a2﹣a+ .
由于﹣a2+a+ =﹣(a﹣ )2+ ∈[ , ],故 b≤ .
由于 a2﹣a+ =(a﹣ )2+ ∈[ , ].故 b≤ .
综上可得 0<b≤
【解析】由题意可得b>0,求出这两个不等式的解集,由题意可得 a2﹣ ≤a﹣b,且 a+b≤a2+ ,0<a≤ .由此可得b小于或等于﹣a2+a+ 的最小值,且b小于或等于 a2﹣a+ 的最小值,由此求得实数b的取值范围.
练习册系列答案
相关题目