题目内容
【题目】函数f(x)=loga(3﹣ax)(a>0,a≠1)
(1)当a=2时,求函数f(x)的定义域;
(2)是否存在实数a,使函数f(x)在[1,2]递减,并且最大值为1,若存在,求出a的值;若不存在,请说明理由.
【答案】
(1)解:当a=2时,f(x)=log2(3﹣2x)
∴3﹣2x>0
解得
即函数f(x)的定义域(﹣ )
(2)解:假设存在满足条件的a,
∵a>0且a≠1,令t=3﹣ax,则t=3﹣ax为单调递减的函数
由复合函数的单调性可知,y=logat在定义域上单调递增,且t=3﹣ax>0在[1,2]上恒成立
∴a>1且由题可得f(1)=1,3﹣2a>0,
∴loga(3﹣a)=1,2a<3
∴3﹣a=a,且a
故a的值不存在
【解析】(1)由题意可得,3﹣2x>0,解不等式可求函数f(x)的定义域(2)假设存在满足条件的a,由a>0且a≠1可知函数t=3﹣ax为单调递减的函数,则由复合函数的单调性可知,y=logat在定义域上单调递增,且t=3﹣ax>0在[1,2]上恒成立,f(1)=1,从而可求a的范围
【题目】某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如表:
学历 | 35岁以下 | 35~50岁 | 50岁以上 |
本科 | 80 | 30 | 20 |
研究生 | x | 20 | y |
(Ⅰ)用分层抽样的方法在35~50岁年龄段的专业技术人员中抽取一个容量为10的样本,将该样本看成一个总体,从中任取3人,求至少有1人的学历为研究生的概率;
(Ⅱ)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取N个人,其中35岁以下48人,50岁以上10人,再从这N个人中随机抽取出1人,此人的年龄为50岁以上的概率为 ,求x、y的值.
【题目】某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).
(1)应收集多少位女生的样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:,试估计该校学生每周平均体育运动时间超过4小时的概率.
(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时.请完成每周平均体育运动时间与性别的列联表,并判断能否在犯错误的概率不超过0.05的前提下认为该校学生的每周平均体育运动时间与性别有关?
男生 | 女生 | 合计 | |
每周平均体育运动时间不超过4小时 | |||
每周平均体育运动时间超过4小时 | |||
合计 | 300 |
附:,其中.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |