题目内容

在等比数列{an}中,若前n项之积为Tn,则有T3n=(
T2nTn
)3
.则在等差数列{bn}中,若前n项之和为Sn,用类比的方法得到的结论是
 
分析:由等差和等比数列的通项和求和公式及类比推理思想可得结果.
解答:解:在等差数列中S3n=Sn+(S2n-Sn)+(S3n-S2n)=(a1+a2+…+an)++(S2n-Sn)+(a2n+1+a2n+2+…+a3n
因为a1+a3n=a2+a 3n-1=…=an+a2n+1=an+1+a2n
所以Sn+(S3n-S2n)=2(S2n-Sn),所以S3n=3(S2n-Sn).
故答案为:S3n=3(S2n-Sn).
点评:本题考查类比推理、等差和等比数列的类比,搞清等差和等比数列的联系和区别是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网