题目内容

15.在四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠ABC=90°,AB=PB=PC=BC=2CD,平面PBC⊥平面ABCD.
(Ⅰ)求证:AB⊥平面PBC;
(Ⅱ)求平面ADP与平面BCP所成的锐二面角的大小.

分析 (Ⅰ)证明AB⊥平面PBC,利用面面垂直的性质,根据AB⊥BC,平面PBC⊥平面ABCD,即可得证;
(Ⅱ)取BC的中点O,连接PO,以O为原点,OB所在的直线为x轴,在平面ABCD内过O垂直于BC的直线为y轴,OP所在直线为z轴建立空间直角坐标系O-xyz,求出平面ADP与平面BCP的法向量,利用向量的夹角公式,即可求平面ADP与平面BCP所成的锐二面角的大小.

解答 (Ⅰ)证明:因为∠ABC=90°,所以AB⊥BC,
因为平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,AB?平面ABCD,
所以AB⊥平面PBC.
(Ⅱ)解:如图,取BC的中点O,连接PO,
因为PB=PC,所以PO⊥BC.
因为PB=PC,所以PO⊥BC,
因为平面PBC⊥平面ABCD,所以PO⊥平面ABCD.
以O为原点,OB所在的直线为x轴,在平面ABCD内过O垂直于BC的直线为y轴,OP所在直线为z轴建立空间直角坐标系O-xyz.
不妨设BC=2.由AB=PB=PC=BC=2CD得,P003D110A120
所以DP=113DA=210
设平面PAD的法向量为m=(x,y,z).
所以{xy+3z=02x+y=0
令x=-1,则y=2z=3,所以m=(-1,2,3).
取平面BCP的一个法向量n=010
所以cos<mn>=22
所以平面ADP与平面BCP所成的锐二面角的大小为π4

点评 本题考查线面垂直,考查平面ADP与平面BCP所成的锐二面角,解题的关键是掌握线面垂直的判定方法,正确运用向量法,属于中档题.

一题一题找答案解析太慢了
下载作业精灵直接查看整书答案解析
立即下载
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网