ÌâÄ¿ÄÚÈÝ
£¨2013•ËɽÇø¶þÄ££©ÈçͼËùʾ£¬ÏòÁ¿
µÄÄ£ÊÇÏòÁ¿
µÄÄ£µÄt±¶£¬
Óë
µÄ¼Ð½ÇΪ¦È£¬ÄÇôÎÒÃdzÆÏòÁ¿
¾¹ýÒ»´Î£¨t£¬¦È£©±ä»»µÃµ½ÏòÁ¿
£®ÔÚÖ±½Ç×ø±êƽÃæÄÚ£¬ÉèÆðʼÏòÁ¿
=(4£¬0)£¬ÏòÁ¿
¾¹ýn-1´Î(
£¬
)±ä»»µÃµ½µÄÏòÁ¿Îª
(n¡ÊN*£¬n£¾1)£¬ÆäÖÐAi£¬Ai+1£¬Ai+2(i¡ÊN*)ΪÄæʱÕëÅÅÁУ¬¼ÇAi×ø±êΪ£¨ai£¬bi£©£¨i¡ÊN*£©£¬ÔòÏÂÁÐÃüÌâÖв»ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
BC |
AB |
AB |
BC |
AB |
BC |
OA1 |
OA1 |
1 |
2 |
2¦Ð |
3 |
An-1An |
·ÖÎö£ºÀûÓÃ(
£¬
)±ä»»µÄ¶¨Ò壬ÍƵ¼Öª
=
+
+¡+
µÄÏòÁ¿×ø±ê£¬È»ºóÇó³öan£¬bnµÄ±í´ïʽ£¬È»ºó½øÐмÆËã¼´¿É£®
1 |
2 |
2¦Ð |
3 |
OA |
OA1 |
A1A2 |
An-1An |
½â´ð£º½â£ºÏòÁ¿
=(4£¬0)£¬¾¹ý1´Î±ä»»ºóµÃµ½
=(2cos?
£¬2sin?
)=(-1£¬
)£¬ÔòA2(-1£¬
)£¬
ËùÒÔa2=-1£¬b2=
£¬¼´AÕýÈ·£®
ÔòÓÉÌâÒâÖª
=
+
+¡+
=(4£¬0)+(2cos?
£¬2sin?
)+(cos?
£¬sin?
)+¡+((
)n-3cos?
£¬(
)n-3sin?
)£¬
ËùÒÔan=4+2cos?
+cos?
+¡+(
)n-3cos?
£¬bn=4+2sin?
+sin?
+¡+(
)n-3sin?
£®
ËùÒÔb3k+1-b3k=(
)3k+1-3sin?
=(
)3k+1-3sin?
=(
)3k+1-3sin?2k¦Ð=0£¬
ËùÒÔBÕýÈ·£®
a3k+1-a3k-1=(
)3k+1-3cos?
-(
)3k-3cos?
=(
)3k-2cos?2k¦Ð-(
)3k-3cos?(2k¦Ð-
)
=(
)3k-2-(
)3k-3¡Á
=(
)3k-2-(
)3k-2=0£¬
ËùÒÔCÕýÈ·£®
¹Ê´íÎóµÄÊÇD£®
¹ÊÑ¡D£®
OA1 |
OA2 |
2¦Ð |
3 |
2¦Ð |
3 |
3 |
3 |
ËùÒÔa2=-1£¬b2=
3 |
ÔòÓÉÌâÒâÖª
OA |
OA1 |
A1A2 |
An-1An |
2¦Ð |
3 |
2¦Ð |
3 |
4¦Ð |
3 |
4¦Ð |
3 |
1 |
2 |
2(n-1)¦Ð |
3 |
1 |
2 |
2(n-1)¦Ð |
3 |
ËùÒÔan=4+2cos?
2¦Ð |
3 |
4¦Ð |
3 |
1 |
2 |
2(n-1)¦Ð |
3 |
2¦Ð |
3 |
4¦Ð |
3 |
1 |
2 |
2(n-1)¦Ð |
3 |
ËùÒÔb3k+1-b3k=(
1 |
2 |
2(3k+1-1)¦Ð |
3 |
1 |
2 |
2¡Á3k¦Ð |
3 |
1 |
2 |
ËùÒÔBÕýÈ·£®
a3k+1-a3k-1=(
1 |
2 |
2(3k+1-1)¦Ð |
3 |
1 |
2 |
2(3k-1)¦Ð |
3 |
1 |
2 |
1 |
2 |
¦Ð |
3 |
=(
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
ËùÒÔCÕýÈ·£®
¹Ê´íÎóµÄÊÇD£®
¹ÊÑ¡D£®
µãÆÀ£º±¾ÌâÊÇж¨ÒåÌâÄ¿£¬Ê×ÏȶÁ¶®Ð¶¨ÒåµÄʵÖÊ£¬×ª»¯³ÉÎÒÃÇÒÑÓеÄ֪ʶ²¢½â¾ö£®±¾ÌâʵÖÊ¿¼²éÏòÁ¿µÄ×ø±êÔËË㣬¼¸ºÎÔËË㣬ÄѶȽϴó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿