题目内容
证明:(1)n |
![]() |
k=0 |
C | k n |
(2)2C2n0+C2n1+2C2n2+C2n3+…+C2n2n-1+2C2n2n=3•22n-1(n∈N);
(3)2<(1+
1 |
n |
分析:(1)从右边开始分析,将3看成1+2,由二项式定理展开可得左式,即原等式可得证明;
(2)观察左式,可将左式转化为(C2n0+C2n1+C2n3+…+C2n2n)+(C2n0+C2n2+C2n4+…+C2n2n),由二项式系数的性质,(C2n0+C2n1+C2n3+…+C2n2n)=22n,(C2n0+C2n2+C2n4+…+C2n2n)=22n-1,相加可得右式,即原等式可得证明;
(3)由二项式定理,将(1+
)n展开可得1+
Cn1+
Cn2+…
+Cnn=1+1++
Cn2+…
+Cnn;分析可得:(1+
)n>2;另一方面,用放缩法分析,,(1+
)n=1+1+
+
+…+
•
•(n-1)(n-2)…2•1<1+1+
+
+…+
<1+1+
+
+…+
;整理可得右式的证明,综合可证得原不等式.
(2)观察左式,可将左式转化为(C2n0+C2n1+C2n3+…+C2n2n)+(C2n0+C2n2+C2n4+…+C2n2n),由二项式系数的性质,(C2n0+C2n1+C2n3+…+C2n2n)=22n,(C2n0+C2n2+C2n4+…+C2n2n)=22n-1,相加可得右式,即原等式可得证明;
(3)由二项式定理,将(1+
1 |
n |
1 |
n |
1 |
n2 |
1 |
nn |
1 |
n2 |
1 |
nn |
1 |
n |
1 |
n |
1 |
2! |
n-1 |
n |
1 |
3! |
(n-1)(n-2) |
n2 |
1 |
n! |
1 |
nn-1 |
1 |
2! |
1 |
3! |
1 |
n! |
1 |
2 |
1 |
22 |
1 |
2n-1 |
解答:证明:(1)右式=3n=(1+2)n=C2020+C2121+C2222+…+C2n2n=
2k
=左式;
故得证;
(2)左式=(C2n0+C2n1+C2n3+…+C2n2n)+(C2n0+C2n2+C2n4+…+C2n2n)=22n+22n-1=3•22n-1=右式;
故得证;
(3)由二项式定理,(1+
)n=1+
Cn1+
Cn2+…
+Cnn=1+1+
Cn2+…
+Cnn;①
由①知,(1+
)n>2;
另一方面,(1+
)n=1+1+
+
+…+
•
•(n-1)(n-2)…2•1
<1+1+
+
+…+
<1+1+
+
+…+
<1+
=3;
综合即2<(1+
)n<3.
n |
![]() |
n-1 |
C | k n |
故得证;
(2)左式=(C2n0+C2n1+C2n3+…+C2n2n)+(C2n0+C2n2+C2n4+…+C2n2n)=22n+22n-1=3•22n-1=右式;
故得证;
(3)由二项式定理,(1+
1 |
n |
1 |
n |
1 |
n2 |
1 |
nn |
1 |
n2 |
1 |
nn |
由①知,(1+
1 |
n |
另一方面,(1+
1 |
n |
1 |
2! |
n-1 |
n |
1 |
3! |
(n-1)(n-2) |
n2 |
1 |
n! |
1 |
nn-1 |
<1+1+
1 |
2! |
1 |
3! |
1 |
n! |
1 |
2 |
1 |
22 |
1 |
2n-1 |
<1+
1 | ||
1-
|
综合即2<(1+
1 |
n |
点评:本题考查二项式定理的应用,涉及等式、不等式的证明;注意观察原等式或不等式的形式,结合二项式定理,进而对原题题干进行恒等变形,最终证明命题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目